K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 2 2016

Giả sử ta có :n = 2 =>(n-1)(n+2)+2 không chia hết cho 9

=>(n-1)(n+2)+2 không chia hết cho 9 với mọi n !!!!!!!

Chắc chắn đúng !!!!!!!!!!!!!!

Ủng hộ mình nha bạn ơi !!!!!!!!!!!!!!!!!!!

3 tháng 8 2017

Ta có:(n+2)(n-2)+12 

Áp dụng hàm đảng thức vào biểu thức ta được:

n^2-2^2+12=n^2-4+12=n^2+8.

Xét trường hợp n^2 chia hết cho 9 thì:

n^2+8=9k+8(k thuộc Z)

=>n^2+8 chia cho 9 dư 1.

Xét trường hợp n^2 ko chia hết cho 9 thì:

n^2+8=9h+m+8(m=1,2,3,4,5,6,7,8)

Ta xét các trường hợp m=1,2,3,4,5,6,7,8

=>m=2,3,4,5,6,7,8 thì n^2+8 ko chia hết cho 9

Và m=1 thì n^2+8 chia hết cho 9(loại)

Vậy với mọi trường hợp thì (n+2)(n-2)+12 ko chia hết cho 9 (trừ tường hợp bị loại)

22 tháng 11 2015

Ta có n² + n + 1 = n² + ( n + 1) = n(n+1) + 1 


+ Giả sử : n chia hết cho 9 
=> n² chia hết cho 9 
=> (n + 1) không chia hết cho 9 
=> n² + ( n + 1) không chia hết cho 9 

+ Giả sử : ( n + 1) chia hết cho 9 
=> n(n+1) chia hết cho 9 
=> n(n+1) + 1 không chia hết cho 9 
=> n² + ( n + 1) không chia hết cho 9

1 tháng 2 2017

( n - 1 ) ( n + 2 ) + 12 ( khong chia het cho 9 ) - Online Math

Đó mk kiếm đc đó

Tick cho mình

1 tháng 2 2017

Mình cũng có 1 câu hỏi giống như thế này nhưng không biết giải

You and I has the same a life

20 tháng 1 2016

bạn xét các trường hợp n=9k, 9k+1, 9k+2, 9k+3, 9k+4, 9k+5, 9k+6, 9k+7, 9k+8

8 tháng 2 2016

vì n là số nguyên nên n có 3 dạng:3k; 3k+1;3k+2

*Với n=3k=>n chia hết cho 3=>n-1 và n+2 không chia hết cho 3

=>(n-1)(n+2) không chia hết cho 3. Mà 12 chia hết cho 3 =>(n-1)(n+2)+12 không chia hết cho 3=> tổng đó không chia hết cho 9

*Với n=3k+1=>n-1=3k;n+2=3k+3 chia hết cho 3=>(n-1)(n+2) chia hết cho9. Mà 12 không chia hết cho9=> tổng đó không chia hết cho9.

*Với n=3k+2=>n-1=3k+1; n+2=3k+4 đều không chia hết cho3=>(n-1)(n+2) không chia hết cho3. Mà 12 chia hết cho3 =>tổng đó không chia hết cho3 => tổng đó không chia hết cho9

Vậy ta có đpcm

8 tháng 2 2016

(n+1)(n+2)=12

=(n+1)*n+(n+1)*2+12

=n2 +1n+2n+2+12

=n2 +(1+2)n+(2+12)

=n2 +3n+14

=n*n+3n+14

=n(n+3)+14

Vì 14 không chia hết cho 9 nên n(n+3) không chia hết cho 9

nên n(n+3)+14 không chia hết cho 9

nên (n-1)(n+2)+12 không chia hết cho 9 với mọi n

vậy mọi n thuộc z thì (n-1)(n+2)+12 không chia hết cho 9

1/ CM: Tỏng các Lập phương của ba số nguyên chia hết cho 6 chỉ khi tổng 3 số đó chia hết cho 62/ Cho 2 số lẽ có hiệu các lập phương chia hết cho 8 chứng minh hiệu hai số đó cũng chia hét cho 83/CM : Nếu bình phương thiếu của tổng hai số nguyên chia hết cho9 thì ttichs hai số đó cũng chia hết cho 94/ CM tổng các lập phương của 3 số nguyên liên tiếp thì chia hết cho 95/CM n^5-5n^3+4n chia hết cho 120 vơi...
Đọc tiếp

1/ CM: Tỏng các Lập phương của ba số nguyên chia hết cho 6 chỉ khi tổng 3 số đó chia hết cho 6

2/ Cho 2 số lẽ có hiệu các lập phương chia hết cho 8 chứng minh hiệu hai số đó cũng chia hét cho 8

3/CM : Nếu bình phương thiếu của tổng hai số nguyên chia hết cho9 thì ttichs hai số đó cũng chia hết cho 9

4/ CM tổng các lập phương của 3 số nguyên liên tiếp thì chia hết cho 9

5/CM n^5-5n^3+4n chia hết cho 120 vơi mọi số nguyên n

6/CM n^3+3n^2+n+3 chia hết cho 48 vơi mọi số lẻ n

7/ CM n^4+4n^3-4n^2+16n chia hết chi 384 với mọi số nguyên n

8/CMR với mọi số nguyên n thì n^2+11n+39 không chia hết chi 49

9/ CM lấy tich của 3 số nguyên liên tiếp +1 , được một số chính phương

10/CMR với mọi số tự nhiên n>1:

a/ số n^4 +4 là hợp số

b/ số n^4+4k^4 là hợp số (k là số tự nhiên)

11/ Tính giá trị của biểu thức (1+ab-b^4)(a^4+1) với a=2^7, b=5

12/ Số 2^32+1 có là số nguyên tố không?

13/ CMR Số 11....1-22...2 là một số chính phương(có 2n số 1 và n số 2)

14/ CMR số 111....12...2 (có n số 1 và n số 2) là tích hai số nguyên liên tiếp với mọi số nguyên dương n

15/ Tìm số có 3 chữ số sao cho chia nó cho 11 được thương bằng tổng các chữ số bị chia

                               

6
14 tháng 7 2016

nhìn là hết muốn làm

14 tháng 7 2016

sao dài dòng quá vậy, như thế thì ai mà làm nổi, bạn phải hỏi từng bài 1 chứ

Nhìn là muốn chạy rùi

^-^