K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 2 2018

Ta có: ax^2 + bx + c = a'x^2 + b'x +c' với mọi x.(1)

Thay x=0 vào (1) được c=c'. Do đó:

     ax^2 + bx + a'x^2 + b'x với mọi x. (2)

Thay x=1 vào (2) được a+b + a'+b'.

Thay x= -1 vào (2) được a-b = a'-b'.

\(\Rightarrow\)2a = 2a'

\(\Rightarrow\)a = a' 

\(\Rightarrow\)b = b'

Vậy ta chứng minh đươc a = a' ; b= b' ; c= c'

28 tháng 3 2021

F(0)=d⇒d⋮5F(0)=d⇒d⋮5

F(1)=a+b+c+d⋮5⇒a+b+c⋮5F(1)=a+b+c+d⋮5⇒a+b+c⋮5

F(−1)=−a+b−c+d⋮5⇒−a+b−c⋮5F(−1)=−a+b−c+d⋮5⇒−a+b−c⋮5

⇒(a+b+c)+(−a+b−c)⋮5⇒(a+b+c)+(−a+b−c)⋮5

⇒2b⋮5⇒b⋮5⇒2b⋮5⇒b⋮5

⇒a+c⋮5

5 tháng 12 2016

a)2x(2x+7)=4(2x+7)

    2x(2x+7)-4(2x+7)=0

    (2x+7)(2x-4)=0

\(\Rightarrow\orbr{\begin{cases}2x+7=0\\2x-4=0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x=-\frac{7}{2}\\x=2\end{cases}}\)

5 tháng 12 2016

b)Ta có:x3-4x2+ax=x3-3x2-x2+ax

                           =x2(x-3)-x(x-a)

          Để x3-4x2+ax chia hết cho x-3 thì a=3

21 tháng 3 2015

Để ​(ax3 + bx2 + cx + d) chia hết cho 5 thì 

axchia hết cho 5 

và bx2 chia hết cho 5 

và cx chia hết cho 5 

và axchia hết cho 5 (dùng ngoặc và) 

=> a,b,c,d đề phải chia hết cho 5

theo tôi là vậy

22 tháng 3 2015

ta có: x là số nguyên và x chia hết cho 5 ( trong toán học bạn phải viết kí hiệu của chia hết ra nhang)

=> ax^3 chia hết cho 5

bx^2 chia hết cho 5

cx chia hết cho 5

d chia hết cho 5

=>a,b,c,d đều chia hết cho 5

 

22 tháng 4 2022

*C/m với x nguyên, 2a, a+b, c là các số nguyên khi đa thức P(x) luôn nhận giá trị nguyên.

\(P\left(0\right)=c\) nguyên.

\(P\left(1\right)=a+b+c\) nguyên mà c nguyên \(\Rightarrow a+b\) nguyên. (1)

\(P\left(2\right)=4a+2b+c\) nguyên mà c nguyên \(\Rightarrow4a+2b\) nguyên. (2)

-Từ (1), (2) suy ra a, b nguyên \(\Rightarrow\)2a nguyên.

\(\Rightarrow\)đpcm.

*C/m với x nguyên, đa thức P(x) luôn nhận giá trị nguyên khi 2a, a+b, c nguyên.

-Từ đây suy ra cả 3 số a,b,c đều nguyên.

\(\Rightarrow\)đpcm.