tìm nghiệm của đa thức C(x)= 11x^2 - 15x + 4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
7x² + 11x + 4 = 0
7x² + 7x + 4x + 4 = 0
(7x² + 7x) + (4x + 4) = 0
7x(x + 1) + 4(x + 1) = 0
(x + 1)(7x + 4) = 0
x + 1 = 0 hoặc 7x + 4 = 0
*) x + 1 = 0
x = 0 - 1
x = -1
*) 7x + 4 = 0
7x = 0 - 4
7x = -4
x = -4/7
Vậy nghiệm của đa thức đã cho là x = -1; x = -4/7
\(7x^2+11x+4=0\\ \Leftrightarrow\left(7x+4\right)\left(x+1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{4}{7}\\x=-1\end{matrix}\right.\)
a) \(A=-11x^5+4x-12x^2+11x^5+13x^2-7x+2\)
\(A=\left(-11x^5+11x^5\right)+\left(-12x^2+13x^2\right)+\left(4x-7x\right)+2\)
\(A=0+x^2+\left(-3x\right)+2\)
\(A=x^2-3x+2\)
Bậc của đa thức là: \(2\)
Hệ số cao nhất là: \(1\)
b) Ta có: \(M\left(x\right)=A\left(x\right)\cdot B\left(x\right)\)
\(\Rightarrow M\left(x\right)=\left(x^2-3x+2\right)\cdot\left(x-1\right)\)
\(\Rightarrow M\left(x\right)=x^3-x^2-3x^2+3x+2x-2\)
\(\Rightarrow M\left(x\right)=x^3-4x^2+5x-2\)
c) A(x) có nghiệm khi:
\(A\left(x\right)=0\)
\(\Rightarrow x^2-3x+2=0\)
\(\Rightarrow x^2-x-2x+2=0\)
\(\Rightarrow x\left(x-1\right)-2\left(x-1\right)=0\)
\(\Rightarrow\left(x-1\right)\left(x-2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-1=0\\x-2=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
a: P(x)=5x^3+3x^2-2x-5
\(Q\left(x\right)=5x^3+2x^2-2x+4\)
b: P(x)-Q(x)=x^2-9
P(x)+Q(x)=10x^3+5x^2-4x-1
c: P(x)-Q(x)=0
=>x^2-9=0
=>x=3; x=-3
d: C=A*B=-7/2x^6y^4
Vì x=14 nên x+1=15
Thay 15=x+1 vào A(x) ta có:
A(x)= x15-(x+1)x14+(x+1)x13-(x+1)x12+...+(x+1)x3-(x+1)x2+(x+1)x-15
= x15-x15-x14+x14+x13-x13-x12+...+x4+x3-x3-x2+x2-x-15
= x-15
=> A(14) = 14-15=-1
Vậy A(14) = -1
b.* Với x=0 ta có:
0.f(-4)=-2.f(0)
=> 0=-2.f(0) => f(0)=0
=> đa thức f(x) có 1 nghiệm là 0 (1)
* với x=2 ta có: 2.f(-2)=0.f(2)
=> 2.f(2)=0 => f(2)=0
=> 2 là nghiệm của đa thức f(x) (2)
Từ (1) và (2) => đa thức f(x) có ít nhất 2 nghiệm
\(11x^2-15x+4=0\)
\(\Leftrightarrow11x^2-11x-4x+4=0\)
\(\Leftrightarrow11x\left(x-1\right)-4\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(11x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\11x-4=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{4}{11}\end{matrix}\right.\)
\(S=\left\{1,\dfrac{4}{11}\right\}\)
Đặt C(x)=0
\(\Leftrightarrow11x^2-15x+4=0\)
\(\Leftrightarrow11x^2-11x-4x+4=0\)
\(\Leftrightarrow11x\left(x-1\right)-4\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(11x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\11x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\11x=4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{4}{11}\end{matrix}\right.\)
Vậy: Nghiệm của đa thức \(C\left(x\right)=11x^2-15x+4\) là 1 và \(\dfrac{4}{11}\)