Chứng minh rằng 1 phần 5+1 phần 7 + 1 phần 9 + ... + 1 phần 101 không là số tự nhiên
Chứng minh rằng A= [ 1 phần 1 + 1 phần 2 + 1 phần 3 + ... +1 phần 98 ] . 2.3.4.5. ... .98
Mình mong bạn giúp mình bạn giải cụ thể ra cho mình nhé
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/1002 + 1/1012 + ... + 1/1992 < 1/99.100 + 1/100.101 + ... + 1/198.199 = 1/99 - 1/100 + 1/100 - 1/101 + ... + 1/198 - 1/199 = 1/99 - 1/199
\(\Rightarrow\)Vậy 1/1002 + 1/1012 + ... + 1/1992 < 1/99 (vì 1/99 đã lớn hơn 1/99 - 1/199 rồi mà G lại còn bé hơn 1/99 - 1/199 nữa)
1/1002 + 1/1012 + ... + 1/1992 > 1/100.101 + ... + 1/199.200 = 1/100 - 1/101 + ... + 1/199 - 1/200 = 1/100 - 1/200 = 1/200
\(\Rightarrow\)Vậy 1/1002 + 1/1012 + ... + 1/1992 > 1/200
Ta có : 1/4=1/2*2>1/2*3
1/9=1/3*3>1/3*4
...
1/100=1/10*10>1/10*11
=>A>1/2*3+1/3*4+...+1/10*11=1/2 - 1/3+1/3 - 1/4 +...+1/10 - 1/11
=1/2 - 1/11=9/22=54/132<65/132(bạn hình như viết sai đầu bài chứ cách này đúng mà!)
\(100-\left(1+\frac{1}{2}+\frac{1}{3}+....+\frac{1}{100}\right)\)
\(=(1-1)+\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{3}\right)+...\left(1-\frac{1}{100}\right)\)
\(=\frac{1}{2}+\frac{2}{3}...+\frac{99}{100}\)
\(S=\left(\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{150}\right)+\left(\frac{1}{151}+\frac{1}{152}+...+\frac{1}{200}\right)\)
\(S>\frac{50.1}{150}+\frac{50.1}{200}\)
\(\Rightarrow S>\frac{1}{3}+\frac{1}{4}\)
\(S>\frac{7}{12}\)
Chúc em học tốt^^
\(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}>\frac{7}{12}\)
\(\left(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{150}\right)+\left(\frac{1}{151}+\frac{1}{152}+...+\frac{1}{200}\right)\)
\(\left(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{150}\right)+\left(\frac{1}{151}+\frac{1}{152}+...+\frac{1}{200}\right)>\frac{50}{150}+\frac{50}{200}=\frac{1}{3}+\frac{1}{4}=\frac{7}{12}\)