K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 3 2015

ta có: n2 là số chính phương 

=> n2 chia 4 dư 1 hoặc 0

nếu n2 chia 4 dư 0 => 2002+n2 chia 4 dư 2

=> 2002+n2 ko phải scp

nếu n2 chia 4 dư 1=> 2002+n2 chia 4 dư 3

=> 2002+nko phải scp

vậy ko tồn tại n số tự nhiên n để 2002+n2 là scp

15 tháng 12 2017

ta có: n
2
là số chính phương
=> n
2 chia 4 dư 1 hoặc 0
nếu n
2 chia 4 dư 0 => 2002+n
2 chia 4 dư 2
=> 2002+n
2 ko phải scp
nếu n
2 chia 4 dư 1=> 2002+n
2 chia 4 dư 3
=> 2002+n
2 ko phải scp
vậy ko tồn tại n số tự nhiên n để 2002+n
2
là scp

chúc bn hok tốt @_@

31 tháng 3 2019

Có n=5

13 tháng 11 2015

Không có:)) Mình nghĩ vậy!

8 tháng 2 2019

ko vì 

Giả sử n^2 + 2006 = m^2 (m,n la số nguyên) 
Suy ra n^2 - m^2 =2006 <==> ( n - m )( n + m ) = 2006 
Gọi a = n - m, b = n + m ( a,b cũng là số nguyên) 
Vì tích của a và b bằng 2006 la một số chẵn, suy ra trong 2 số a và b phải có ít nhất 1 số chẵn (1) 
Mặt khác ta có: a + b = (n - m) + (n + m) = 2n là 1 số chẵn ==> a và b phải cùng chẵn hoặc cùng lẻ(2) 
Từ (1) và (2) suy ra a và b đều là số chẵn 
Suy ra a = 2k , b= 2l ( với k,l là số nguyên) 
Theo như trên ta có a.b = 2006 hay 2k.2l = 2006 hay 4.k.l = 2006 
Vì k,l là số nguyên nên suy ra 2006 phải chia hết cho 4 ( điều này vô lý, vì 2006 không chia hết cho 4) 
Vậy không tồn tại số nguyên n thỏa mãn đề bài đã cho.(đpcm)

8 tháng 2 2019

Giả sử n^2 + 2006 = m^2 (m,n la số nguyên) 
Suy ra n^2 - m^2 =2006 <==> ( n - m )( n + m ) = 2006 
Gọi a = n - m, b = n + m ( a,b cũng là số nguyên) 
Vì tích của a và b bằng 2006 la một số chẵn, suy ra trong 2 số a và b phải có ít nhất 1 số chẵn (1) 
Mặt khác ta có: a + b = (n - m) + (n + m) = 2n là 1 số chẵn ==> a và b phải cùng chẵn hoặc cùng lẻ(2) 
Từ (1) và (2) suy ra a và b đều là số chẵn 
Suy ra a = 2k , b= 2l ( với k,l là số nguyên) 
Theo như trên ta có a.b = 2006 hay 2k.2l = 2006 hay 4.k.l = 2006 
Vì k,l là số nguyên nên suy ra 2006 phải chia hết cho 4 ( điều này vô lý, vì 2006 không chia hết cho 4) 
Vậy không tồn tại số nguyên n thỏa mãn đề bài đã cho.(đpcm)

31 tháng 1 2017

Để \(n^2+2002\) là số chính phương thì \(n^2+2002=a^2\)(a là số tự nhiên khác 0)

\(\Rightarrow a^2-n^2=2002\Rightarrow\left(a-n\right)\left(a+n\right)=2002\)

Do \(2002⋮2\)\(\Rightarrow\left(a-n\right)\left(a+n\right)⋮2\)hay \(a-n⋮2\)hoặc \(a+n⋮2\)hoặc \(\)a-n và a+n đều\(⋮2\)

mà a-n-(a+n)=-2n \(⋮2\)\(\Rightarrow\)a-n và a+n cùng chẵn hoặc lẻ \(\Rightarrow\) a-n; a+n đều \(⋮2\)\(\Rightarrow\)\(\left(a-n\right)\left(a+n\right)⋮4\)

Mà 2002 ko chia hết cho 4 \(\Rightarrow\)ko tồn tại n đẻ n^2+2002 là số chính phương

12 tháng 12 2018

đơngiản tự nghĩ lấy hỏi gì mà hỏi 

5 tháng 4 2016

giả sử n +  2002 = a2

 nếu a và n không cùng tính chẵn lẻ 

 a2 - n2  là số lẻ 

 mà 2002 là số chẵn 

 nên nếu a và n không cùng tính chẵn lẻ thì n2 +2002 ko phải là 1 số chính phương 

nếu a và n cùng tính chẵn lẻ thì a và n khác 2002 ( vì 2002 không chia hết cho 4 mà a2 - n2 chia hết cho 4 )

vậy ko có số nào thích hợp 

5 tháng 4 2016

Gọi số cần tìm là a

ta có n^2+2002=a^2

a^2-n^2=2002

(a-n)(a+n)=2002

do 2002 chia hết cho 2=>a-n hoặc a+n cũng phải chia hết cho 2

mà a-n-(a+n)=-2n chia hết cho 2

=>a-n và a+n là cặp chẵn lẻ=>a-n hay a+n đều chia hết cho 2

mà 2 số đều chia hết cho 2 thì tích của chúng sẽ chia hết cho 4

=>(a-n)(a+n) chia hết cho 4

mà 2002 ko chia hết cho 4

=>ko có số thự nhiên nào để n^2 +2002 là số chính phương

15 tháng 4 2016

Giả sử : n^2 + 2006 là số chính phương 

=> n2 + 2006 = k2 ( k thuộc N )

=> 2006 = k2 - n2 = ( k - n ).( k + n )

Ta có : 2006 = 2 x 1003 

=> k - n = 2 => n = 2 + k

     k + n = 1003

=> k + 2 + k = 1003

=> 2k = 1001 => k = 1001/2 ( loại )

Vậy giả thiết không đúng => n^2 + 2006 ko là số chính phương

16 tháng 4 2016

kudo shinichi làm sai đề rồi phải như thế này nè:

 để n^2 +2002 là số chính phương 
=> n^2 +2002 =a^2 ( với a là số tự nhiên #0) 
=> a^2 -n^2 =2002 
=> (a-n)(a+n) =2002 
do 2002 chia hết cho 2=> a-n hoặc a+n phải chia hết cho 2 
mà a-n -(a+n) =-2n chia hết cho 2 
=> a-n và a+n cung tính chẵn lẻ => a-n ,a+n đều chia hết cho 2 
=>(a-n)(a+n) chia hết cho 4 mà 2002 không chia hết cho 4 
=> vô lý 

k cho tớ nha

ai k mh mh k lại

17 tháng 3 2016

giả sư tồn tại n sao cho n2+2002 là số chính phương

Đặt n2+2002=m(m thuộc N )

=> m2-n= 2002 => (m+n)(m-n) = 2002 (bất đẳng thức)

vì m-n+m+n = 2m là một số chẵn; mặt khác 2002 chia hết cho 2

=> (m+n)(m-n) chia hết cho 4 mà 2002 không chia hết cho 4 nên không tồn tại n sao cho n2+2002 là số chính phương.