K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 11 2021

Xét trường hợp ΔΔABC nhọn và ^MBC > ^MCA (các trường hợp khác chứng minh tương tự)

Khi đó D thuộc tia đối của tia BA, E và F tương ứng nằm trên cạnh BC, CA.

Hình tự vẽ nhé

Vì các tứ giác MDBE, ABMC và MCFE nội tiếp nên ^MED = ^MBD = ^ACM = 180o - ^MEM

=> ^MED + ^MEF = 180o <=> ^DEF = 180o.

Vậ D, E, F thẳng hàng (đpcm)

P/s: Bài toán trên theo mình nhớ không lầm thì là đường thẳng sim sơn

30 tháng 11 2021

Bạn chỉ cần dựa theo dạng này nhé

Tứ giác ABMC nội tiếp \(\Rightarrow\widehat{ABM}+\widehat{ACM}=180^0\)

Mà \(\widehat{ACM}+\widehat{MCE}=180^0\Rightarrow\widehat{ABM}=\widehat{MCE}\)

D và E cùng nhìn CM dưới 1 góc vuông \(\Rightarrow CDME\) nội tiếp

\(\Rightarrow\widehat{MCE}=\widehat{MDE}\) (cùng chắn ME) \(\Rightarrow\widehat{ABM}=\widehat{MDE}\)

Mặt khác D và F cùng nhìn BM dưới 1 góc vuông \(\Rightarrow BFDM\) nội tiếp

\(\Rightarrow\widehat{ABM}+\widehat{FDM}=180^0\)

\(\Rightarrow\widehat{MDE}+\widehat{FDM}=180^0\Rightarrow\) D, E, F thẳng hàng

18 tháng 5 2021
Bài này sử dụng tứ giác nội tiếp và sử dụng góc bẹt

Bài tập Tất cả

Bài tập Tất cả

Bài tập Tất cả

Bài tập Tất cả

mik ko bt lm bài này bn à . mik thông minh lắm mấy bn mới ngu ấy

4 tháng 3 2022

a, Xét tứ giác CDME có 

^MEC = ^MDC = 900

mà 2 góc này kề, cùng nhìn cạnh MC 

Vậy tứ giác CDME là tứ giác nt 1 đường tròn 

b, bạn ktra lại đề 

NV
21 tháng 1 2021

Tứ giác ABMC nội tiếp \(\Rightarrow\widehat{ABM}+\widehat{ACM}=180^0\)

Mà \(\widehat{ACM}+\widehat{MCE}=180^0\Rightarrow\widehat{ABM}=\widehat{MCE}\)

D và E cùng nhìn CM dưới 1 góc vuông \(\Rightarrow CDME\) nội tiếp

\(\Rightarrow\widehat{MCE}=\widehat{MDE}\) (cùng chắn ME) \(\Rightarrow\widehat{ABM}=\widehat{MDE}\)

Mặt khác D và F cùng nhìn BM dưới 1 góc vuông \(\Rightarrow BFDM\) nội tiếp

\(\Rightarrow\widehat{ABM}+\widehat{FDM}=180^0\)

\(\Rightarrow\widehat{MDE}+\widehat{FDM}=180^0\Rightarrow\) D, E, F thẳng hàng

NV
21 tháng 1 2021

Hình vẽ:

undefined

góc MKC=góc MIC=90 độ

=>MCKI nội tiếp

=>góc MIK+góc MCK=180 độ

góc MIB+góc MHB=180 độ

=>MIBH nội tiếp

=>góc MIH=góc MBH

góc MIH+góc MIK

=180 độ-góc MCK+góc MBH

=180 độ

=>H,I,K thẳng hàng

20 tháng 10 2019

goi giao MF voi ABla H , giao ME voi AC la K, MD voi BC la I

Do tam giac ABC noi tiep (O) ma M thuoc (o) nen ABMC noi tiep

xet tam giac MDF co \(\hept{\begin{cases}H.la.trung.diem.MF\\I.la.trung.diem.DM\end{cases}\Rightarrow HI//DF}\) (1)

tuong tu cung co \(IK//ED\) va  \(HK//EF\) ( do tinh chat duong trung binh)          (2)

Xet tu giac HBIM co \(\widehat{BHM}+\widehat{BIM}=90+90=180^o\)

=> HBIM la tu giac noi tiep => \(\widehat{HIB}=\widehat{BMH}\)  (cung chan \(\widebat{BH}\) )   (4)

tuong tu cung chung minh duoc tu giac MIKC la tu giac noi tiep => \(\widehat{KIC}=\widehat{KMC}\left(cung.chan.\widebat{KC}\right)\)(3)

Lai co \(\widehat{HBM}=\widehat{MAH}+\widehat{AMB}\) (tinh chat goc ngoai)

va \(\widehat{MCK}=\widehat{MCB}+\widehat{ACB}\) 

ma ABMC noi tiep suy ra \(\hept{\begin{cases}\widehat{AMB}=\widehat{ACB}\\\widehat{MAB}=\widehat{MCB}\end{cases}}\)

=> \(\widehat{MHB}=\widehat{MCK}\)

xet tam giac MHB va tam giac MKC co

\(\widehat{H}=\widehat{K}=90\)

\(\widehat{MHB}=\widehat{MCK}\) (cmt)

=> \(\widehat{HMB}=\widehat{KMC}\) (5)

tu (3),(4),(5)  =>\(\widehat{HIB}=\widehat{KIC}\)

=> H,I,K thang hang (6)

tu (1),(2),(6)

suy ra F,D,E thang hang ( tien de Oclit)

chuc ban hoc tot

20 tháng 10 2019

Cần gấp !!

a: góc CDM=góc CEM=90 độ

=>CDEM nội tiếp

b: Xet ΔMEA vuông tại E và ΔMDB vuông tại D có

góc EMA chung

=>ΔMEA đồng dạng với ΔMDB

=>ME/MD=MA/MB

=>ME*MB=MA*MD

20 tháng 3 2023

a. góc CDM=góc CEM=90 độ

=>CDEM nội tiếp

b. Xet ΔMEA vuông tại E và ΔMDB vuông tại D có

góc EMA chung

=>ΔMEA đồng dạng với ΔMDB

=>ME/MD=MA/MB

=>ME*MB=MA*MD