Cho \(\Delta ABC\)nội tiếp đường tròn (O). Lấy D nằm trên đường tròn với D không trùng với 3 đỉnh của \(\Delta ABC\). Gọi M, N, P lần lượt là hình chiếu của M trên BC, AC, AB. Chứng minh ba điểm M, N, P thẳng hàng.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mik ko bt lm bài này bn à . mik thông minh lắm mấy bn mới ngu ấy
a, Xét tứ giác CDME có
^MEC = ^MDC = 900
mà 2 góc này kề, cùng nhìn cạnh MC
Vậy tứ giác CDME là tứ giác nt 1 đường tròn
b, bạn ktra lại đề
Tứ giác ABMC nội tiếp \(\Rightarrow\widehat{ABM}+\widehat{ACM}=180^0\)
Mà \(\widehat{ACM}+\widehat{MCE}=180^0\Rightarrow\widehat{ABM}=\widehat{MCE}\)
D và E cùng nhìn CM dưới 1 góc vuông \(\Rightarrow CDME\) nội tiếp
\(\Rightarrow\widehat{MCE}=\widehat{MDE}\) (cùng chắn ME) \(\Rightarrow\widehat{ABM}=\widehat{MDE}\)
Mặt khác D và F cùng nhìn BM dưới 1 góc vuông \(\Rightarrow BFDM\) nội tiếp
\(\Rightarrow\widehat{ABM}+\widehat{FDM}=180^0\)
\(\Rightarrow\widehat{MDE}+\widehat{FDM}=180^0\Rightarrow\) D, E, F thẳng hàng
góc MKC=góc MIC=90 độ
=>MCKI nội tiếp
=>góc MIK+góc MCK=180 độ
góc MIB+góc MHB=180 độ
=>MIBH nội tiếp
=>góc MIH=góc MBH
góc MIH+góc MIK
=180 độ-góc MCK+góc MBH
=180 độ
=>H,I,K thẳng hàng
goi giao MF voi ABla H , giao ME voi AC la K, MD voi BC la I
Do tam giac ABC noi tiep (O) ma M thuoc (o) nen ABMC noi tiep
xet tam giac MDF co \(\hept{\begin{cases}H.la.trung.diem.MF\\I.la.trung.diem.DM\end{cases}\Rightarrow HI//DF}\) (1)
tuong tu cung co \(IK//ED\) va \(HK//EF\) ( do tinh chat duong trung binh) (2)
Xet tu giac HBIM co \(\widehat{BHM}+\widehat{BIM}=90+90=180^o\)
=> HBIM la tu giac noi tiep => \(\widehat{HIB}=\widehat{BMH}\) (cung chan \(\widebat{BH}\) ) (4)
tuong tu cung chung minh duoc tu giac MIKC la tu giac noi tiep => \(\widehat{KIC}=\widehat{KMC}\left(cung.chan.\widebat{KC}\right)\)(3)
Lai co \(\widehat{HBM}=\widehat{MAH}+\widehat{AMB}\) (tinh chat goc ngoai)
va \(\widehat{MCK}=\widehat{MCB}+\widehat{ACB}\)
ma ABMC noi tiep suy ra \(\hept{\begin{cases}\widehat{AMB}=\widehat{ACB}\\\widehat{MAB}=\widehat{MCB}\end{cases}}\)
=> \(\widehat{MHB}=\widehat{MCK}\)
xet tam giac MHB va tam giac MKC co
\(\widehat{H}=\widehat{K}=90\)
\(\widehat{MHB}=\widehat{MCK}\) (cmt)
=> \(\widehat{HMB}=\widehat{KMC}\) (5)
tu (3),(4),(5) =>\(\widehat{HIB}=\widehat{KIC}\)
=> H,I,K thang hang (6)
tu (1),(2),(6)
suy ra F,D,E thang hang ( tien de Oclit)
chuc ban hoc tot
a: góc CDM=góc CEM=90 độ
=>CDEM nội tiếp
b: Xet ΔMEA vuông tại E và ΔMDB vuông tại D có
góc EMA chung
=>ΔMEA đồng dạng với ΔMDB
=>ME/MD=MA/MB
=>ME*MB=MA*MD
a. góc CDM=góc CEM=90 độ
=>CDEM nội tiếp
b. Xet ΔMEA vuông tại E và ΔMDB vuông tại D có
góc EMA chung
=>ΔMEA đồng dạng với ΔMDB
=>ME/MD=MA/MB
=>ME*MB=MA*MD
Xét trường hợp ΔΔABC nhọn và ^MBC > ^MCA (các trường hợp khác chứng minh tương tự)
Khi đó D thuộc tia đối của tia BA, E và F tương ứng nằm trên cạnh BC, CA.
Hình tự vẽ nhé
Vì các tứ giác MDBE, ABMC và MCFE nội tiếp nên ^MED = ^MBD = ^ACM = 180o - ^MEM
=> ^MED + ^MEF = 180o <=> ^DEF = 180o.
Vậ D, E, F thẳng hàng (đpcm)
P/s: Bài toán trên theo mình nhớ không lầm thì là đường thẳng sim sơn
Bạn chỉ cần dựa theo dạng này nhé
Tứ giác ABMC nội tiếp \(\Rightarrow\widehat{ABM}+\widehat{ACM}=180^0\)
Mà \(\widehat{ACM}+\widehat{MCE}=180^0\Rightarrow\widehat{ABM}=\widehat{MCE}\)
D và E cùng nhìn CM dưới 1 góc vuông \(\Rightarrow CDME\) nội tiếp
\(\Rightarrow\widehat{MCE}=\widehat{MDE}\) (cùng chắn ME) \(\Rightarrow\widehat{ABM}=\widehat{MDE}\)
Mặt khác D và F cùng nhìn BM dưới 1 góc vuông \(\Rightarrow BFDM\) nội tiếp
\(\Rightarrow\widehat{ABM}+\widehat{FDM}=180^0\)
\(\Rightarrow\widehat{MDE}+\widehat{FDM}=180^0\Rightarrow\) D, E, F thẳng hàng