2/ Cho đường tròn (O), điểm K nằm bên ngoài đường tròn. Kẻ các tiếp tuyến KB, KC với đường tròn (B, C là các tiếp điểm)
a) Chứng minh: OK vuông góc BC tại H
b) Vẽ đường kính CD của (O), MD cắt (O) tại E. Chứng minh
c) Chứng minh: KH.KO=KE.KD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: Xét tứ giác KAOB có \(\widehat{KAO}+\widehat{KBO}=90^0+90^0=180^0\)
nên KAOB là tứ giác nội tiếp
2: Xét (O) có
\(\widehat{KAC}\) là góc tạo bởi tiếp tuyến AK và dây cung AC
\(\widehat{ADC}\) là góc nội tiếp chắn cung AC
Do đó: \(\widehat{KAC}=\widehat{ADC}\)
Xét ΔKAC và ΔKDA có
\(\widehat{KAC}=\widehat{KDA}\)
\(\widehat{AKC}\) chung
Do đó: ΔKAC đồng dạng với ΔKDA
=>\(\dfrac{KA}{KD}=\dfrac{KC}{KA}\)
=>\(KA^2=KC\cdot KD\)
Xét (O) có
KA,KB là các tiếp tuyến
Do đó: KA=KB
=>K nằm trên đường trung trực của AB(1)
Ta có: OA=OB
=>O nằm trên đường trung trực của AB(2)
Từ (1) và (2) suy ra OK là đường trung trực của AB
=>OK\(\perp\)AB tại M và M là trung điểm của AB
Xét ΔOAK vuông tại A có AM là đường cao
nên \(KM\cdot KO=KA^2\)
=>\(KA^2=KM\cdot KO=KC\cdot KD\)
a) Nối CE, CF
Xét \(\Delta CEK\) và \(\Delta CFK\) có:
\(\widehat{ECK}\)= \(\widehat{CFK}\) (vì cùng chắn \(\widebat{CE}\))
\(\widehat{CKF}\) chung
\(\Rightarrow\)\(\Delta EKC~\Delta CKF\left(g.g\right)\)
\(\Rightarrow\frac{EK}{CK}=\frac{CK}{FK}\)
\(\Rightarrow CK^2=EK.FK\)(1)
Vì \(\Delta COK\)vuông tại C, \(CM\perp OK\)
\(\Rightarrow CK^2=MK.OK\)(2)
Từ (1), (2) \(\Rightarrow EK.FK=MK.OK\)
\(\Rightarrow\frac{EK}{MK}=\frac{OK}{FK}\)
Xét \(\Delta MEK\)và \(\Delta KOF\)có:
\(\widehat{MKE}\)chung
\(\frac{EK}{MK}=\frac{OK}{FK}\)
\(\Rightarrow\Delta MEK~\Delta FOK\left(c.g.c\right)\)
\(\Rightarrow\widehat{OFE}=\widehat{EMK}\)
\(\Rightarrow\)Tứ giác EMOF nội tiếp
a: Xét (O) có
KB là tiếp tuyến
KC là tiếp tuyến
Do đó: KB=KC
hay K nằm trên đường trung trực của BC(1)
Ta có: OB=OC
nên O nằm trên đường trung trực của BC(2)
Từ (1) và (2) suy ra OK là đường trung trực của BC