b) Cho 2a+b/2c+d+a+3b/c+3d.CMR:a/b+c/d Nhanh giúp mik vs mai phải nộp bài ròi :(
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1: Đặt \(\dfrac{a}{c}=\dfrac{b}{d}=k\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=ck\\b=dk\end{matrix}\right.\)
\(\dfrac{a}{a+c}=\dfrac{ck}{ck+c}=\dfrac{ck}{c\left(k+1\right)}=\dfrac{k}{k+1}\)
\(\dfrac{b}{b+d}=\dfrac{dk}{dk+d}=\dfrac{k}{k+1}\)
Do đó: \(\dfrac{a}{a+c}=\dfrac{b}{b+d}\)
\(\frac{a}{b}=\frac{c}{d}\Rightarrow ad=bc\)
a)\(\frac{a-b}{a+b}=\frac{c-d}{c+d}\)
\(\Leftrightarrow\left(a-b\right)\left(c+d\right)=\left(c-d\right)\left(a+b\right)\)
\(\Leftrightarrow ac-bc+ad-bd=ac-ad+bc-bd\)
\(\text{Thay }ad=bc\text{ vào}\Rightarrow ac-ad+ad-bd=ac-ad+ad-bd\)
\(\text{Đây là đẳng thức đúng }\Rightarrow\frac{a-b}{a+b}=\frac{c-d}{c+d}\text{ là đúng }\)
b)\(\text{Tương tự*}\)
a) \(\frac{a}{b}=\frac{c}{d}\Leftrightarrow\frac{a}{b}+1=\frac{c}{d}+1\Leftrightarrow\frac{a+b}{b}=\frac{c+d}{d}\Leftrightarrow\frac{b}{a+b}=\frac{d}{c+d}\)
\(\Leftrightarrow\frac{-2b}{a+b}+1=\frac{-2d}{c+d}+1\Leftrightarrow\frac{a-b}{a+b}=\frac{c-d}{c+d}\)
b) \(\frac{a}{b}=\frac{c}{d}\Leftrightarrow\frac{4a}{b}-5=\frac{4c}{d}-5\Leftrightarrow\frac{4a-5b}{b}=\frac{4c-5d}{d}\Leftrightarrow\frac{b}{4a-5b}=\frac{d}{4c-5d}\)
\(\Leftrightarrow\frac{11b}{4a-5b}+1=\frac{11d}{4c-5d}+1\Leftrightarrow\frac{4a+6b}{4a-5b}=\frac{4c+6d}{4c-5d}\Leftrightarrow\frac{2a+3b}{4a-5b}=\frac{2c+3d}{4c-5d}\)
\(\Leftrightarrow\frac{2a+3b}{2c+3d}=\frac{4a-5b}{4c-5d}\)
Bài 1: Đặt \(\dfrac{a}{c}=\dfrac{b}{d}=k\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=ck\\b=dk\end{matrix}\right.\)
\(\dfrac{a}{a+c}=\dfrac{ck}{ck+c}=\dfrac{ck}{c\left(k+1\right)}=\dfrac{k}{k+1}\)
\(\dfrac{b}{b+d}=\dfrac{dk}{dk+d}=\dfrac{k}{k+1}\)
Do đó: \(\dfrac{a}{a+c}=\dfrac{b}{b+d}\)
Từ a/b = c/d => a/c = b/d => 2a/2c = 3b/ 3d = 2a + 3b / 2c + 3d (1)
Cx từ a/b =c/d => a/c = c/d => 4a/4c = 5b/5d = 4a - 5b / 4c-5d (2)
Mà 2a/ 2c = 4a/ 4c (3)
Từ (1) (2) (3) => đpcm
mk chỉ nghĩ như thế thôi chứ ko bt đúng hay sai nha
Sửa đề: Chứng minh \(\dfrac{ab}{cd}=\left(\dfrac{2a+3b}{2c+3d}\right)^2\)
Đặt a/b=c/d=k
=>a=bk; c=dk
\(\dfrac{ab}{cd}=\dfrac{bk\cdot b}{dk\cdot d}=\dfrac{b^2}{d^2}\)
\(\left(\dfrac{2a+3b}{2c+3d}\right)^2=\left(\dfrac{2bk+3b}{2dk+3d}\right)^2=\left(\dfrac{b}{d}\right)^2\)
Do đó: \(\dfrac{ab}{cd}=\left(\dfrac{2a+3b}{2c+3d}\right)^2\)
Chứng minh
Do ab=cd
⇒2ab=2cd
⇔2ab+3=2cd+3
⇔2ab+3bb=2cd+3dd
⇔2a+3bb=2c+3dd
Do ab=cd
⇒2ab=2cd
⇔2ab+3=2cd+3
⇔2ab+3bb=2cd+3dd
⇔2a+3bb=2c+3dd