K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 6 2018

Câu hỏi của Hoàng Đỗ Việt - Toán lớp 6 | Học trực tuyến

Bài 1 :

Ta có;\(\frac{1}{21}+\frac{1}{22}+\frac{1}{23}+...+\frac{1}{30}>\frac{1}{30}.10=\frac{1}{3}\)

\(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{60}>\frac{1}{60}.30>\frac{1}{30}.24=\frac{2}{5}\)

Do đó :

\(\frac{1}{21}+\frac{1}{22}+...+\frac{1}{60}>\frac{1}{3}+\frac{2}{5}=\frac{11}{15}\left(1\right)\)

Mặt khác :

\(\frac{1}{21}+\frac{1}{22}+...+\frac{1}{40}< \frac{1}{20}.20=1\)

\(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{60}< \frac{1}{40}.20=\frac{1}{2}\)

Do đó :

\(\frac{1}{21}+\frac{1}{22}+...+\frac{1}{60}< 1+\frac{1}{2}=\frac{3}{2}\left(2\right)\)

Từ (1 ) và (2) ta suy ra điều phải chứng minh

Bài 2 : 

Đặt \(S=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{63}\)

MỘT MẶT ,TA CÓ THỂ VIẾT

\(S=\left(1+\frac{1}{2}\right)+\left(\frac{1}{3}+\frac{1}{4}\right)+\left(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}\right)\)\(+\left(\frac{1}{9}+\frac{1}{10}+...+\frac{1}{16}\right)+\left(\frac{1}{17}+\frac{1}{18}+...+\frac{1}{32}\right)\)\(+\left(\frac{1}{33}+\frac{1}{34}+...+\frac{1}{63}+\frac{1}{64}\right)-\frac{1}{64}\)

\(>\frac{1}{2}.2+\frac{1}{4}.2+\frac{1}{8}.4+\frac{1}{16}.8+\frac{1}{32}.16+\frac{1}{64}.32-\frac{1}{64}\)\(=\frac{7}{2}-\frac{1}{64}=\frac{223}{64}>\frac{192}{64}=3\left(1\right)\)

Mặt khác ,ta lại có\(S=1+\left(\frac{1}{2}+\frac{1}{3}\right)+\left(\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}\right)\)\(+\left(\frac{1}{8}+\frac{1}{9}+...+\frac{1}{15}\right)+\left(\frac{1}{16}+\frac{1}{17}+...+\frac{1}{31}\right)\)\(+\left(\frac{1}{32}+\frac{1}{33}+...+\frac{1}{63}\right)< \)\(1+\frac{1}{2}.2+\frac{1}{4}.4+\frac{1}{8}.8+\frac{1}{16}.16+\frac{1}{32}.32=6\left(2\right)\)

Từ (1) và (2 ) ta kết luận \(3< S< 6\)

Chúc bạn học tốt ( -_- )

26 tháng 7 2019

Hình như là c/minh 1 < A2 < 4 mà

28 tháng 3 2018

Trước hết ta cần chứng minh bài toán 1/(k+1)+1/(k+2)+1/(k+3)+…+1/(k+n)<n/(k+1... với n>2,k thuộc N*
Thật vậy vì k thuộc N*nên ta có 
k+1=k+1=>1/(k+1)= 1/(k+1) 
k+2>k+1=>1/(k+2)<1/(k+1) 
k+3>k+1=>1/(k+3)< 1/(k+1) 
… 
k+n>k+1=>1/(k+n)< 1/(k+1) 
=>1/(k+1)+1/(k+2)+1/(k+3)+…+1/(k+n)< 
1/(k+1)+ 1/(k+1)+…+ 1/(k+1) (có n số 1/(k+1) ) 

=>1/(k+1)+1/(k+2)+1/(k+3)+…+1/(k+n) 
<n/(k+1) 
………………………… 
Áp dụng bài toán trên ta có 
1=1 
1/2+1/3 
=1/(1+1)+1/(1+2) 
<2/(1+1)=2/2=1 
1/4+1/5+1/6+1/7 
=1/(3+1)+1/(3+2)+1/(3+3)+1/(3+4) 
<4/(3+1)=4/4=1 
1 / 8 +1/9 ... +1/15 
=1/(7+1)+1/(7+2)+…+1/(7+8) 
<8/(7+1)=8/8=1 
1/16+1/17+..+1/31 
=1/(15+1)+1/(15+2)+….+1/(15+16) 
<16/(15+1)=16/16=1 
1/32+1/33+…+1/63 
=1/(31=1)+1/(32+1)+…+1/(31+32) 
<32/(31+1)=32/32=1 
=>1 / 2 + 1 / 3+…+1/63<1+1+1+1+1+1 
=>1 / 2 + 1 / 3+…+1/63<6 (đpcm)

Hơi dài nha