tìm số nguyên x và y biết
\(\frac{x}{8}\)=\(\frac{y}{12}\)
và 2x+3y=13
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\frac{x}{8}=\frac{y}{12}=\frac{2x}{16}=\frac{3y}{36}=\frac{2x+3y}{16+36}=\frac{13}{52}\)
\(\Rightarrow\frac{13}{52}=\frac{x}{8}\Rightarrow x=\frac{13.8}{52}=\frac{104}{52}=2\)
\(\Rightarrow\frac{13}{52}=\frac{y}{12}\Rightarrow y=\frac{13.12}{52}=\frac{156}{52}=3\)
Vậy x = 2 , y = 3
Đầu tiên bạn tách 13 ra tổng của 2 số:
13 = 13 + 0
12 + 1
11 + 2
10 + 3
9 + 4
8 + 5
7 + 6
6 + 7
5 + 8
4 + 9
3 + 10
2 + 11
1 + 12
0 + 13
Mà 2x + 3y = 13 => 2 số hạng của tổng phải có 1 số chia hết cho 2 và 1 số chia hết cho 3
=> 2x = 4 ; 3y = 9
=> x = 2 ; y = 3
\(\frac{x}{8}=\frac{y}{12}=\frac{2x+3y}{16+36}=\frac{-156}{52}=-3\)
x=-3.8=-24
y=-3.12=-36
Ta có : \(\frac{x}{8}=\frac{y}{12}=\frac{2x}{16}=\frac{3y}{36}=\frac{2x+3y}{16+36}=\frac{-156}{52}=-3\)
=> x = -3.8 = -24 ; y = -3.12 = -36
a) Giải:
Ta có: \(\frac{x}{y}=-2\Rightarrow\frac{x}{-2}=\frac{y}{1}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{-2}=\frac{y}{1}=\frac{x+y}{-2+1}=\frac{12}{-1}=-12\)
+) \(\frac{x}{-2}=-12\Rightarrow x=24\)
+) \(\frac{y}{1}=-12\Rightarrow y=-12\)
Vậy cặp số \(\left(x;y\right)\) là \(\left(24;-12\right)\)
b) Giải:
Ta có: \(\frac{x}{y}=\frac{7}{10}\Rightarrow\frac{x}{7}=\frac{y}{10}\)
Đặt \(\frac{x}{7}=\frac{y}{10}=k\)
\(\Rightarrow x=7k;y=10k\)
Mà \(xy=36\)
\(7k10k=36\)
\(\Rightarrow70k^2=36\)
\(\Rightarrow k^2=\frac{18}{35}\) ( sai đề )
c) Giải:
Ta có: \(\frac{2x}{3y}=\frac{-1}{3}\Rightarrow\frac{2x}{-1}=\frac{3y}{3}\Rightarrow\frac{-2x}{1}=\frac{3y}{3}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{-2x}{1}=\frac{3y}{3}=\frac{-2x+3y}{1+3}=\frac{7}{4}\)
+) \(\frac{-2x}{1}=\frac{7}{4}\Rightarrow x=\frac{-7}{8}\)
+) \(\frac{3y}{3}=\frac{7}{4}\Rightarrow y=\frac{7}{4}\)
Vậy cặp số \(\left(x;y\right)\) là \(\left(\frac{-7}{8};\frac{7}{4}\right)\)
\(\frac{2x}{5}=\frac{3y}{10}=\frac{z}{12}\)
\(\Rightarrow\frac{1}{6}.\frac{2x}{5}=\frac{1}{6}.\frac{3y}{10}=\frac{1}{6}.\frac{z}{12}\)
\(\Rightarrow\frac{2x}{30}=\frac{3y}{60}=\frac{z}{72}\)
\(\Rightarrow\frac{x}{15}=\frac{y}{20}=\frac{z}{72}\)
Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :
\(\frac{x}{15}=\frac{y}{20}=\frac{z}{72}=\frac{x+y+z}{15+20+72}=\frac{109}{107}\)
Bạn xem lại đề bài nhé !!!
Ta có :
\(\frac{2x}{5}=\frac{3y}{10}=\frac{z}{12}\)
\(\Leftrightarrow\)\(\frac{2x}{5}.\frac{1}{6}=\frac{3y}{10}.\frac{1}{6}=\frac{z}{12}.\frac{1}{6}\)
\(\Leftrightarrow\)\(\frac{x}{15}=\frac{y}{20}=\frac{z}{72}\)
Và \(x+y+z=109\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{15}=\frac{y}{20}=\frac{z}{72}=\frac{x+y+z}{15+20+72}=\frac{109}{107}\)
Do đó :
\(\frac{x}{15}=\frac{109}{107}\)\(\Rightarrow\)\(x=\frac{109}{107}.15=\frac{1635}{107}\)
\(\frac{y}{20}=\frac{109}{107}\)\(\Rightarrow\)\(y=\frac{109}{107}.20=\frac{2180}{107}\)
\(\frac{z}{72}=\frac{109}{107}\)\(\Rightarrow\)\(z=\frac{109}{107}.72=\frac{7848}{107}\)
Vậy \(x=\frac{1635}{107}\)\(;\)\(y=\frac{2180}{107}\) và \(z=\frac{7848}{107}\)
Chúc bạn học tốt ~
\(\frac{x}{8}=\frac{y}{12}\Rightarrow2.8+3.12=\frac{52}{13}=4\)
=> x = 4 . 8 = 32
y = 4 . 12 = 48
x trên 8 =y trên 12=>2x trên 16 =3y trên 36
áp dụng tính chất của dãy tỉ số bằng nhau .Ta có:
2x trên 16 =3y trên 36=2x+3y trên 16+36=13 trên 52=1 trên 4
=>x=1 trên 4 nhân 8=2
y=1 trên 4 nhân 12 =3