Cho tam giác ABC cân tạibA .Gọi M là trung điểm của cạnh BC.
a)Chứng minh : tam giác ABM =tam giác ACM (c.c.c)
b)Từ M vẽ MH vuông góc với AB và MK vuông góc với AC.Chứng minh BH=CK (c/m tam giác vuông BHM=tam giác vuông CKM cạnh huyền +góc nhọn =>BH=CK).
a,Xét tam giác ABM và tam giác ACM ta có:
BM=CM [gt]
góc ABM=góc ACM[gt]
AB=AC[gt]
Rồi suy ra tam giác ABM=ACM
Cậu tự vẽ hình và ghi gt, kl nhé !
a) Vì \(\Delta ABC\)cân tại A (gt) => AB=AC(1) ; góc ABC = góc ACB(2)
Xét \(\Delta ABM\)và \(\Delta ACM,\)có :
AM chung
AB=AC( theo (1) )
BM=MC(gt)
=>\(\Delta ABM=\Delta ACM\left(c.c.c\right)\)
Vậy \(\Delta ABM=\Delta ACM\)
b) Xét \(\Delta BHM\)và \(\Delta CKM\), có :
Góc BHM = góc MKC = 90 độ (gt)
BM=MC (gt)
Góc ABC= góc ACB (theo (2) )
=> \(\Delta BHM=\Delta CKM\)( cạnh huyền - góc nhọn )
=> BH=CK ( hai cạnh tương ứng )
Vậy BH=CK