Tìm tất cả các số nguyên ( p,q) thỏa mãn p^q + 7q^p cũng là số nguyên tố
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Dễ thấy pq+7 là số lẻ \(\Rightarrow\)pq chẵn\(\Rightarrow\)p=2 hoặc q=2
th1: p=2\(\Rightarrow\)q=3,7
thử lại thấy chỉ có q=3 đúng.
th2: q=2
neu p=2 thi 5p+q khong phai so nguyen to
neu p=3 thi ca hai thoa man
neu p>3 thi p co dang 3k+1;3k+2
(lam tiep...)
Đặt \(a=p^q+7q^p\)
Nếu p; q đều bằng 2 \(\Rightarrow a=2^2+7.2^2\) là hợp số (ktm)
Nếu p; q cùng lớn hơn 2 \(\Rightarrow p^q\) và \(q^p\) đều lẻ
\(\Rightarrow a=p^q+7q^p\) là số chẵn lớn hơn 2 \(\Rightarrow\) là hợp số (ktm)
\(\Rightarrow\) Có đúng 1 số trong p; q phải bằng 2, số còn lại là SNT lẻ
TH1: \(p=2\Rightarrow a=2^q+7.q^2\)
- Nếu \(q=3\Rightarrow a=2^3+7.3^2=71\) là SNT (thỏa mãn)
- Nếu \(q>3\Rightarrow q^2\equiv1\left(mod3\right)\Rightarrow7q^2\equiv1\left(mod3\right)\)
\(2^q=2^{2k+1}=2.4^k\equiv2\left(mod3\right)\)
\(\Rightarrow a=2^q+7.q^2\equiv2+1\left(mod3\right)\Rightarrow a⋮3\) là hợp số (ktm)
TH2: \(q=2\Rightarrow a=p^2+7.2^p\)
- Nếu \(p=3\Rightarrow a=3^2+7.2^3=65\) ko phải SNT (ktm)
- Nếu \(p>3\Rightarrow p^2\equiv1\left(mod3\right)\)
\(7.2^p=7.2^{2k+1}=14.4^k\equiv2\left(mod3\right)\)
\(\Rightarrow p^2+7.2^p⋮3\) là hợp số (ktm)
Vậy \(\left(p;q\right)=\left(2;3\right)\) là cặp SNT duy nhất thỏa mãn yêu cầu
Đây là bài toán rất khó về đồng dư thức, em cám ơn thầy Lâm đã giải rất cẩn thận ạ!
\(a^2+a-p=0\)
\(\Rightarrow a\left(a+1\right)=p\)
Vì p là số nguyên tố => p chỉ có 2 ước nguyên là 1; p
Mà \(a\left(a+1\right)=p\) => a và a + 1 là các ước của p
=> a = 1 hoặc a + 1 = 1 => a = 1 hoặc a = 0
Thử lại : với a = 1 => 1(1 + 1) = 2 là số nguyên tố (tm)
với a = 0 => 0(0 + 1) = 0 không là số nguyên tố (loại)
Vậy a = 1
so hard =)