K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 2 2021

\(y=\dfrac{x^2+3x+3}{x^2+1}\Rightarrow y'=\dfrac{\left(x^2+3x+3\right)'\left(x^2+1\right)-\left(x^2+3x+3\right)\left(x^2+1\right)'}{\left(x^2+1\right)^2}\)

\(y'=\dfrac{\left(x^2+1\right)\left(2x+3\right)-\left(x^2+3x+3\right).2x}{\left(x^2+1\right)^2}\)

\(y'=0\Leftrightarrow\left(x^2+1\right)\left(2x+3\right)-2x\left(x^2+3x+3\right)=0\)

\(\Leftrightarrow2x^3+3x^2+2x+3-2x^3-6x^2-6x=0\)

\(\Leftrightarrow3x^2+4x-3=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=..\\x=...\end{matrix}\right.\)

Check lai ho t nhe

\(y'=12x^3-6x-6\)

\(=6\left(2x^3-x-1\right)=6\left(x-1\right)\left(2x^2+2x+1\right)\)

\(\Rightarrow\) Nghiệm của pt \(y'=0\) là \(x=1\)

a) Thay \(m=1\) vào hệ phương trình, ta được:

\(\left\{{}\begin{matrix}3x-y=1\\x+2y=5\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)

  Vậy ...

b) HPT \(\Leftrightarrow\left\{{}\begin{matrix}6x-2y=4m-2\\x+2y=3m+2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}7x=7m\\y=2m-1-3x\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=m\\y=-m-1\end{matrix}\right.\)

Ta có: \(x^2+y^2=5\) 

\(\Rightarrow m^2+m^2+2m+1=5\) \(\Leftrightarrow m^2+m-2=0\) \(\Rightarrow\left[{}\begin{matrix}m=1\\m=-2\end{matrix}\right.\)

  Vậy ...

c) Hệ phương trình luôn có nghiệm duy nhất

Ta có: \(x-3y>0\)

\(\Rightarrow m-3\left(-m-1\right)>0\)

\(\Leftrightarrow4m+3>0\) \(\Leftrightarrow m>-\dfrac{3}{4}\)

  Vậy ...

a) Thay m=1 vào hệ pt, ta được:

\(\left\{{}\begin{matrix}3x-y=1\\x+2y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x-y=1\\3x+6y=15\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-7y=-14\\x+2y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=2\\x=5-2y=5-2\cdot2=1\end{matrix}\right.\)

Vậy: Khi m=1 thì hệ phương trình có nghiệm duy nhất là (x,y)=(1;2)