giải phương trình nghiệm nguyên:\(x^2+xy-2016x-2017y-2018=0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2016x^{2017}+2017y^{2016}=2015\left(1\right)\)
Có 2016x2017 là số chẵn, 2015 là số lẻ
=> 2017y2016 là số lẻ => y2016 là số lẻ
Đặt y1008 = 2k+1 \(\left(k\in Z\right)\)
Có y2016 = (2k+1)2 = 4k2+4k+1
=> 2017y2016 = 2017 (4k2+4k+1) = 2017.4.(k2+k)+2017
Lại có: \(2017.4.\left(k^2+k\right)\equiv0\left(mod4\right)\)
\(2017\equiv1\left(mod4\right)\)
suy ra: \(2017y^{2016}\equiv1\left(mod4\right)\)
mà \(2016x^{2017}\equiv0\left(mod4\right)\)
\(\Rightarrow2016x^{2017}+2017y^{2016}\equiv1\left(mod4\right)\left(2\right)\)
Lại có: \(2015\equiv3\left(mod4\right)\left(3\right)\)
Từ (1), (2) và (3) => PT vô nghiệm
(2016x - 2017y) - (2016x - 2018z) + (2017y - 2018z) = 2018
=> 2016x - 2017y - 2016x + 2018z + 2017y - 2018z = 2018
=> 2016x - 2016x + 2017y - 2017y + 2018z - 2018z = 2018
=> 0x + 0y + 0z = 2018 (vô lí)
Vậy không tìm được các số nguyên x, y, z thỏa mãn đề bài
(2016x - 2017y) - (2016x - 2018z) + (2017y - 2018z) = 2018
=> 2016x - 2017y - 2016x + 2018z + 2017y -2018z = 2018
=> 2016x - 2016x + 2017y - 2017y + 2018z - 2018z=2018
=> 0x + 0y + 0z=2018(vô lý)
Vậy ko tìm được các số nguyên x,y,z thoả mãn đề bài.
Ta có : \(x^2+xy-2016x-2017y-2018=0\)
\(\Leftrightarrow x^2+xy+x-1-2017x-2017y-2017=0\)
\(\Leftrightarrow x\left(x+y+1\right)-2017\left(x+y+1\right)=1\)
\(\Leftrightarrow\left(x-2017\right)\left(x+y+1\right)=1\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-2017=1\\x+y+1=1\end{matrix}\right.\\\left\{{}\begin{matrix}x-2017=-1\\x+y+1=-1\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=2018\\y=-2018\end{matrix}\right.\\\left\{{}\begin{matrix}x=2016\\y=-2018\end{matrix}\right.\end{matrix}\right.\)
Vậy \(\left(x,y\right)\in\left\{\left(2018,-2018\right),\left(2016,-2018\right)\right\}\)
\(\left(2016x-2017y\right)-\left(2016x-2018z\right)+\left(2017y-2018z\right)\)
\(=2016x-2017y-\left(2016x-2018x\right)+2017y-2018z\)
\(=2016x-2016x+2018z-2018z\)
\(=0\)
Vậy \(\left(2016x-2017\right)-\left(2016x-2018z\right)+\left(2017y-2018z\right)\ne2018\)
+, Nếu x = 0 hoặc x = 1 ; y = 0 hoặc y = 1 thay vào 2016x2017 + 2017y2018 = 2019 thì 2016.02017 + 2017.02018 = 4033 ( Loại )
+, Nếu x,y \(\ge\)2 thay vào 2016 . 22017 + 2017 . y 2018 = 2019 ( Vô lí , loại )
Do đó không tồn tại 2 số nguyên x;y thỏa mãn điều kiện bài toán
Vậy không tồn tại ......
Hok tốt
mình xin nhắc nhẹ bạn là nguyên chứ ko phải nguyên dương nên x^2017 có thể âm nhé
https://h7.net/hoi-dap/toan-8/tim-cac-cap-so-nguyen-x-y-thoa-man-x-2-xy-2016x-2017y-2018-0-faq348139.html
Vào link này nhé! (chỉ cần sao chép và search google)
chiu không copy đươc.Em gửi cho anh đi