(x2 -x+2) chia hết cho (x-1) giúp mình câu hỏi này mình sẽ tick cho các bạn 5 sao! Mình cảm ơn ạ!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x + 3 + 9 chia hết x + 3
9 chia hết x + 3
x + 3 thuộc Ư ( 9 )
mà Ư (9) = ( 1,3,9 )
hay x + 3 thuộc ( 1,3,9 )
ta có bảng
x + 3 1 3 9
x -2 0 6
ĐG Loại TM TM
Vậy x thuộc ( 0 , 6 )
Để thoả mãn số a chia 2 dư 1, chia 5 dư 1, chia 7 dư 1 thì a là 2 x 5 x 7 + 1 = 71
(Giải thích: (phần này k ghi nhé) nếu một số chia hết cho vài số nào đó và số đó cần là số bé nhất => số đó chính là tích của các số là ước của nó)
Mà số này chia hết cho 9 nên số a tối thiểu là 71 x 9 = 639
Đáp số: 639
a)
Ta có : (6x+11y) chia hết cho 31
=> 6x+11y+31y chia hết cho 31 ( Vì 31 chia hết cho 31)
=> 6x+42y chia hết cho 31
=>6.(x+7y) chia hết cho 31
=> x+7y chia hết cho 31
b)
3a+5b=8c⇔3(a−c)=5(c−b)(∗)⇒3(a−c)⋮53a+5b=8c⇔3(a−c)=5(c−b)(∗)⇒3(a−c)⋮5, mà (3,5)=1(3,5)=1 nên a−c⋮5a−c⋮5
Vì −8≤a−c≤9−8≤a−c≤9 nên a−c∈−5;0;5a−c∈−5;0;5
Với a−c=−5(1)a−c=−5(1), Thế vào (*), được: b−c=3(2)b−c=3(2). Từ (1), (2) suy ra: a−b=−8a−b=−8 hay b=a+8⇒a=1,b=9,c=6b=a+8⇒a=1,b=9,c=6. Ta được số 196.
Với a−c=0a−c=0 hay a=ca=c loại vì 3 chữ số khác nhau.
Với a−c=5a−c=5 lập luận tương tự, ta được:
b=0;a=8;c=3b=0;a=8;c=3. Ta được số 803.
b=1;a=9;c=4b=1;a=9;c=4. Ta được số 914.
Vậy có tất cả 3 số thỏa mãn đề bài.
Ta có \(\left(x-1\right)⋮\left(15x+1\right)\Rightarrow15\left(x-1\right)⋮\left(15x+1\right)\Rightarrow[\left(15x+1\right)-16]⋮\left(15x+1\right)\Rightarrow\)\(-16⋮\left(15x+1\right)\Rightarrow15x+1\inƯ\left(-16\right)=\left[1,-1,2,-2,4,-4,8,-8,16,-16\right]\)sau đó lập bảng giá trị thì tìm được x =1;0 (1)
Lại có \(x-1\inƯ\left(1001\right)=\left\{1;-1;7;-7;11;-11;13;-13;1001;-1001\right\}\)l Lập bảng giá trị tìm được x=2;0;8;-6;14;-12;1002;-1000(2)
từ (1) và (2) suy ra x=0
Đề trước đó:
(x-7)(x+1)-(x-3)^2=(3x-5)(3x+5)-(3x+1)^2+(x-2)^2-x
<=>x^2+x-7x-7-x^2+6x-9=9x^2-25-9x^2-6x-1+x^2-4x+4-x
<=>x^2-11x-6=0
<=>x^2-2x. 11/2 + 121/4-145/4=0
<=>(x-11/2)^2=145/4
<=>|x-11/2|=căn(145)/2
<=>x=[11+-căn(145)]/2
Lời giải:
$\frac{1}{x}+\frac{1}{y}+\frac{2}{x+y}=\frac{x+y}{xy}+\frac{2}{x+y}$
$=x+y+\frac{2}{x+y}$
$=\frac{x+y}{2}+\frac{x+y}{2}+\frac{2}{x+y}$
$\geq \frac{x+y}{2}+2\sqrt{\frac{x+y}{2}.\frac{2}{x+y}}$ (áp dụng BDT Cô-si)
$\geq \frac{2\sqrt{xy}}{2}+2=\frac{2}{2}+2=3$
Vậy ta có đpcm
Dấu "=" xảy ra khi $x=y=1$
Bạn học lớp 5 à ,cùng khối với mình rồi ,kết bạn mình nha ! Còn về phần câu hỏi thì ............mình thua ,hỏng biết:d
ta co:(x^2-x+2) chia het cho (x-1)
suy ra :x*(x-1)+2 chia het cho (x-1)
ma x*(x-1) chia het cho (x-1)
suy ra 2 chia het cho (x-1)
suy ra (x-1) thuoc uoc cua 2=ngoac nhon 1,2 ngoac nhon
suy ra x thuoc 2 va3
\(x^2-x+2=x\left(x-1\right)+2⋮x-1\text{ do đó: }2⋮x-1\text{ nên: }x-1\inƯ\left(2\right)\)
nên x-1 thuộc: -1;1;-2;2 nên: x thuộc 0;2;-1;3