K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 2 2021

cho em hỏi có phải đây là toán 1 ko ah

18 tháng 2 2021

Đây đâu phải toán lớp 1

17 tháng 6 2019

đề bài

cm 

1/a+2 + 1/b+2 +1/c+2 <=1

bn p viết đề chứ???

##thiêndi###

25 tháng 6 2017

ko cả biết BĐT AM-GM với C-S là gì còn hỏi bài này rảnh háng

26 tháng 6 2017

Đề sai rồi. Nếu như là a, b, c dương thì giá trị nhỏ nhất của nó phải là 9 mới đúng. Còn để có GTNN như trên thì điều kiện là a, b, c không âm nhé. Mà bỏ đi e thi cái gì mà phải giải câu cỡ này. Cậu này mạnh lắm đấy không phải dạng thường đâu.

19 tháng 8 2016

\(gt\Rightarrow1=\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\)

\(\Rightarrow\frac{1}{a^2}+1=\frac{1}{a^2}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=\left(\frac{1}{a}+\frac{1}{b}\right)\left(\frac{1}{a}+\frac{1}{c}\right)\)

\(\frac{1}{ab}\sqrt{\frac{\left(a^2+1\right)\left(b^2+1\right)}{c^2+1}}=\sqrt{\frac{\left(1+\frac{1}{a^2}\right)\left(1+\frac{1}{b^2}\right)}{c^2\left(1+\frac{1}{c^2}\right)}}\)

\(=\frac{1}{c}.\sqrt{\frac{\left(\frac{1}{a}+\frac{1}{b}\right)\left(\frac{1}{a}+\frac{1}{c}\right)\left(\frac{1}{b}+\frac{1}{a}\right)\left(\frac{1}{b}+\frac{1}{c}\right)}{\left(\frac{1}{c}+\frac{1}{a}\right)\left(\frac{1}{c}+\frac{1}{b}\right)}}=\frac{1}{c}\sqrt{\left(\frac{1}{a}+\frac{1}{b}\right)^2}\)

\(=\frac{1}{c}\left(\frac{1}{a}+\frac{1}{b}\right)=\frac{1}{bc}+\frac{1}{ca}\)

Tương tự với các cụm còn lại, ta được

\(A=2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)=2\)

bài này khó thật, nhưng bạn đừng buồn, sẽ có nhiều bạn khác giúp bạn

nha Nguyễn Quang Linh à

11 tháng 12 2017

Từ ab + bc + ac =1

=> ab + bc + ac + a2 = 1 + a2

=> 1 + a2 = (a+b)(a+c) (1)

Tương tự: 1 + b2 = (a+b)(b+c) (2)

1 + c2 = (a+c)(b+c) (3)

Thay (1) (2) (3) vào P

P= a\(\sqrt{\left(b+c\right)^2}\)+ b\(\sqrt{\left(a+c\right)^2}\)+ c\(\sqrt{\left(a+b\right)^2}\)

= a|b+c| + b|a+c| + c|a+b|

= a(b+c) + b(a+c) + c(a+b) (do a,b,c >0)

= ab + ac +ab + bc +ac +bc

= 2(ab + ac + bc)

=2

21 tháng 7 2020

Áp dụng bđt Cauchy-Schwarz ta có

\(VT\ge\frac{\left[3-\left(a+b+c\right)\right]^2}{\sum\sqrt{2\left(b+c\right)^2+bc}}=\frac{4}{\sum\sqrt{2\left(b+c\right)^2+bc}}\)\(\ge\frac{4}{\sum\sqrt{2\left(b+c\right)^2+\frac{\left(b+c\right)^2}{4}}}=\frac{4}{\sum\sqrt{\frac{9\left(b+c\right)^2}{4}}}\)\(=\frac{8}{6\left(a+b+c\right)}=\frac{4}{3}\)

Dấu "=" xảy ra khi \(a=b=c=\frac{1}{3}\)