Cho A = 9999931999 - 5555571997. Chứng minh rằng A chia hết cho 5
CÁC BẠN NHỚ GHI CÁCH GIẢI GIÚP TỚ NHÉ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(999993^{1999}=999993^{1996}.999993^3=\)
\(=\left(999993^4\right)^{499}.999993^3\)
\(999993^4\) có tận cùng là 1\(\Rightarrow\left(999993^4\right)^{499}\) có tận cùng là 1
\(999993^3\) có tận cùng là 7
\(\Rightarrow999993^{1999}\) có tận cùng là 7
Ta có
\(555557^{1997}=555557^{1996}.555557=\)
\(=\left(555557^4\right)^{499}.555557\)
\(555557^4\) có tận cùng là 1\(\Rightarrow\left(555557^4\right)^{499}\) có tận cùng là 1
\(555557\) có tận cùng là 7
\(\Rightarrow555557^{1997}\) có tận cùng là 7
\(\Rightarrow A\) có tận cùng là 0 \(\Rightarrow A⋮5\)
quá ez, vì số dư 1 của số 9999931999 - số dư 1 của số 5555571997 = dư 0. Mà dư 0 là không dư nên chia hết cho 2 và 5. Cho mình 1 điểm nhé
Ta thấy: 9999931999 - 5555571997 có hiệu tận cùng là 2 vậy số trên ko bao giời chia hết cho 5
Đặt A = 1028 + 8
= 100...00 + 8 (số 100...00 có 28 chữ số 0)
= 100...08 (27 chữ số 0)
- Vì A có 3 chữ số tận cùng là 008 nên A chia hết cho 8 (Dấu hiệu chia hết cho 8) (1)
- Tổng các chữ số của A là:
1 + 0 + 0 +...+ 0 + 8 = 9
Vì 9 chia hết cho 9 => A chia hết cho 9 (2)
Từ (1) và (2) => A chia hết cho 72 (Vì 8.9 = 72 và (8; 9) = 1)
Vậy...
72=8.9
Chứng minh biểu thức trên chia hết cho 8 và 9=> đpcm
A=2+2^2+2^3+...+2^60
=(2+2^2+2^3)+...+(2^58+2^59+2^60)
=2(1+2+2^2)+...+2^58(1+2+2^2)
=7(2+..+2^58) chia hết cho 7
A=2+2^2+2^3+...+2^60
=(2+2^2+2^3+2^4)+..+(2^57+2^58+2^59+2^60)
=2(1+2+2^2+2^3)+...+2^57(1+2+2^2+2^3)
=15(2+....+2^57) chia hết cho 15
Vào trang này xem đáp án bạn nhé
http://olm.vn/hoi-dap/question/61032.html
Vì có a10nên số a9+a10 chia hết cho 10
Đấm vào chữ đúng khác có câu trả lời chi tiết hơn đấm vào đó mình đấm cho tất cả mọi người
ta có
\(A+B=a+b-5-b-c+1=a-c-4\)
còn \(C-D=b-c-4-b+a=a-c-4\)
do đó \(A+B=C-D\)
Cho A=\(999993^{1999}-555557^{1997}\).Ta thấy:Ta lấy từng số cuối của chúng nhân với nhau.
999993^0=1;999993^1=.............3;999993^2=..........9;999993^3=.............7.Và cuoi của chúng cứ lần lượt theo những số:1;3;9;7.Giờ ta lấy 1999:4=499 du 3
=>Chữ số tận cùng của 999993^1999=7 n
555557^0=1;555557^1=.........7;555557^2=............9;555557^3=............3.Và cuối của chúng cứ lần lượt theo những số:1;7;9;3.Giờ ta thấy 1997:4 du 1
=>Chữ số tận cùng của 555557^1997=7 m
Từ n và m ta có thể chứng minh rằng:
999993^1999-555557^1997 .Chia hết cho 5
Bài của tớ đứng đó nhưng hơi dài dòng 1 tí.Nếu bạn tìm được người giỏi hơn thì bảo hộ làm gon đi nhé
cho mình
A=9999931999-5555571997
A=9999931996.9999933-5555571996.555557
A=(9999934)499.......7-(5555574)499.555557
A=...........1499........7-..........1499.555557
A=...................1........7-..............1.555557
A=..........................7-....................7
A=....................0 chia hết cho 10(đpcm)