K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 2 2021

có ?????????

Ta có BĐT cô si:\(a+b\ge2\sqrt{ab}\)(1)

Mặt khác a,b là các số âm nên a+b<0 mà \(2\sqrt{ab}>0\)

\(\Rightarrow a+b< 2\sqrt{ab}\left(2\right)\)

Từ (1) và (2) suy ra vô lý

vậy...............

9 tháng 3 2017

Vì a ≥ 0 nên √a xác định, b  ≥  0 nên  b  xác định

Ta có:  a - b 2 ≥  0 ⇔ a - 2 a b  + b  ≥  0

⇒ a + b  ≥  2 a b  ⇔  a + b 2 ≥ a b

Dấu đẳng thức xảy ra khi a = b.

23 tháng 9 2021

\(\frac{a+b}{2}\ge\sqrt{ab}\Leftrightarrow\frac{a+b}{2}-\sqrt{ab}\ge0\)

\(\Leftrightarrow\frac{a-2\sqrt{ab}+b}{2}\ge0\Leftrightarrow\frac{\left(\sqrt{a}-\sqrt{b}\right)^2}{2}\ge0\)

Dấu ''='' xảy ra khi a = b 

8 tháng 5 2021

Ta có : \(\left(a-b\right)^2\ge0\)

\(\Rightarrow a^2+b^2+2ab\ge4ab\)

\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)

Có : \(a,b\ge0\)

\(\Rightarrow a+b\ge2\sqrt{ab}\)

\(\Leftrightarrow\dfrac{a+b}{2}\ge\sqrt{ab}\) ( đpcm )

Vậy ...

18 tháng 7 2015

áp dụng BĐT cô-si ta có:

\(\frac{a+b}{2}=\frac{a}{2}+\frac{b}{2}\)\(\ge2\sqrt{\frac{a}{2}.\frac{b}{2}}=2\frac{\sqrt{a}\sqrt{b}}{\sqrt{4}}=2\frac{\sqrt{ab}}{2}=\sqrt{ab}\)

Vậy \(\frac{a+b}{2}\ge\sqrt{ab}\)

Dấu đẳng thức xảy ra khi a=b=0 hoặc a=b=1

 

18 tháng 7 2015

cái câu hỏi 2 tớ ko bik đúng ko 

20 tháng 12 2017

Với hai số không âm a và b, bất đẳng thức Cô-si cho hai số đó là:

a + b 2 ≥ a b

Các hình chữ nhật có cùng diện tích thì ab không đổi. Từ bất đẳng thức  a + b 2 ≥ a b  và ab không đổi suy ra  a + b 2  đạt giá trị nhỏ nhât bằng ab khi a = b.

 

Điều này cho thấy trong các hình chữ nhật có cùng diện tích thì hình vuông có chu vi bé nhất.

3 tháng 1 2017

Với hai số không âm a và b, bất đẳng thức Cô-si cho hai số đó là:

a + b 2 ≥ a b  

Các hình chữ nhật có cùng chu vi thì  a + b 2  không đổi. Từ bất đẳng thức  a + b 2 ≥ a b    không đổi suy ra ab đạt giá trị lớn nhất bằng  a + b 2  khi a = b.

Điều này cho thấy trong các hình chữ nhật có cùng chu vi thì hình vuông có diện tích lớn nhất.

23 tháng 4 2017

Nếu n= 2, tức có hai giá trị x1x2, và từ giả thiết ở trên, ta có:

{\displaystyle {\begin{aligned}x_{1}&\neq x_{2}\\[3pt]x_{1}-x_{2}&\neq 0\\[3pt]\left(x_{1}-x_{2}\right)^{2}&\geqslant 0\\[3pt]x_{1}^{2}-2x_{1}x_{2}+x_{2}^{2}&\geqslant 0\\[3pt]x_{1}^{2}+2x_{1}x_{2}+x_{2}^{2}&\geqslant 4x_{1}x_{2}\\[3pt]\left(x_{1}+x_{2}\right)^{2}&\geqslant 4x_{1}x_{2}\\[3pt]{\Bigl (}{\frac {x_{1}+x_{2}}{2}}{\Bigr )}^{2}&\geqslant x_{1}x_{2}\\[3pt]{\frac {x_{1}+x_{2}}{2}}&\geqslant {\sqrt {x_{1}x_{2}}}\end{aligned}}}

điều phải chứng minh - ở đây \(x_1=a;x_2=b\)

28 tháng 5 2017

\(\dfrac{a+b}{2}\ge\sqrt{ab}\)

\(\Leftrightarrow a+b\ge2\sqrt{ab}\)

\(\Leftrightarrow a-2\sqrt{ab}+b\ge0\)

\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\)

-Dấu đẳng thức trên xảy ra khi: Trung bình cộng lớn hơn hoặc bằng trung bình nhân