Chứng minh PF vuông OE;EQ vuông góc OF và PQ/EF không đổi khi D di chuyển trên cung nhỏ BC của (O;R)
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
15 tháng 12 2022
a: Xét (O) có
ΔACB nội tiếp
AB là đường kính
Do đó: ΔACB vuông tại C
ΔOBC cân tại O
mà OE là trung tuyến
nên OE vuông góc với BC và OE là phân giác của góc BOC
b: Xét ΔOBD và ΔOCD có
OB=OC
góc BOD=góc COD
OD chung
Do đó: ΔOBD=ΔOCD
=>góc OBD=90 độ
=>DB là tiếp tuyên của (O)
3 tháng 9 2017
https://h.vn/hoi-dap/question/77908.html vào link này là có r
BB
5 tháng 11 2017
Kẻ OK vuông góc vs Bc.
Ta thấy tam giác OKC và ODC
Có:<OKC=<ODC(=90*)
OC:cạnh chung
<OCK=<OCD(do là tia phân giác)
Do đó:Tam giác OKC=tam giác ODC(ch-gn)
=>OK=OD(2 cạnh tương ứng)
C/m tương tự ta được: Tam giác OBE=tam giác OBK(ch-gn)
=>OK =OE(2 cạnh tương ứng)
Mà:OK=OD(c/m trên)
=> OD=OE(đpcm).