tìm x :
x2 + x + 1 chia hết cho x + 1
Mình cần gấp lắm mong các bạn giúp mình
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Số chia hết cho 6 từ 1 đến 2017 là :
(2016-6)\(\div\)6+1=336 (số)
Kết quả 336 số nka bạn!!!!!^_^
số các số chia hết cho 6 từ 1 đén 2017 là
(2016-6):6+1=336(số)
\(x^3-3x^2-3x-1=\left(x-4\right)\left(x^2+x+1\right)+3\)
\(\Rightarrow x^3-3x^2-3x-1\) chia hết \(x^2+x+1\) khi \(3⋮x^2+x+1\)
\(\Rightarrow x^2+x+1=Ư\left(3\right)\) (1)
Mà x nguyên dương \(\Rightarrow x^2+x+1\ge1^2+1+1=3\) (2)
(1);(2) \(\Rightarrow x^2+x+1=3\)
\(\Rightarrow x=1\)
a) Ta có: \(3n+24⋮n-4\)
\(\Leftrightarrow3n-12+36⋮n-4\)
mà \(3n-12⋮n-4\)
nên \(36⋮n-4\)
\(\Leftrightarrow n-4\inƯ\left(36\right)\)
\(\Leftrightarrow n-4\in\left\{1;-1;2;-2;3;-3;4;-4;6;-6;9;-9;12;-12;18;-18;36;-36\right\}\)
hay \(n\in\left\{5;3;6;2;7;1;8;0;10;-2;13;-5;16;-8;22;-14;40;-32\right\}\)
Vậy: \(n\in\left\{5;3;6;2;7;1;8;0;10;-2;13;-5;16;-8;22;-14;40;-32\right\}\)
2x + 7 chia hết cho x + 1
=> 2x + 2 + 5 chia hết cho x + 1
=> 2.(x + 1) + 5 chia hết cho x + 1
mà 2.(x + 1) chia hết cho x + 1
=> 5 chia hết cho x + 1
=> x + 1 thuộc Ư(5) = {-5; -1; 1; 5}
=> x thuộc {-6; -2; 0; 4}.
Ta có:
\(\left(\frac{1}{5}+\frac{1}{3}+\frac{3}{10}\right)+-\frac{1}{2}=\frac{1}{5}+\frac{1}{3}+\frac{3}{10}\)\(-\frac{1}{2}\)
=\(\frac{6}{30}+\frac{10}{30}+\frac{9}{30}-\frac{15}{30}=\frac{6+10+9-15}{30}=\frac{10}{30}=\frac{1}{3}\)
a) Ta có : ( x+3 ).( x- 5 ) = 0
suy ra: x+3 = 0 hoặc x - 5 = 0
suy ra : x = -3 hoặc x = 5
KL : Vậy x = -3 hoặc x = 5
a) \(x+xy-y=8\)
\(\Leftrightarrow x.\left(1+y\right)-y=8\)
\(\Leftrightarrow x.\left(1+y\right)-y-1=8-1\)
\(\Leftrightarrow x.\left(1+y\right)-\left(1+y\right)=7\)
\(\Leftrightarrow\left(1+y\right).\left(x-1\right)=7\)
Lập bảng tìm tiếp
b) Ta có: \(\hept{\begin{cases}\left(x+2\right)^2\ge0\forall x\\\left(2y-6\right)^4\ge0\forall x\end{cases}}\)
\(\Rightarrow\left(x+2\right)^2+\left(2y-6\right)^4\ge0\forall x\)
Do đó \(\left(x+2\right)^2+\left(2y-6\right)^4=0\)
\(\Leftrightarrow\hept{\begin{cases}\left(x+2\right)^2=0\\\left(2y-6\right)^4=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-2\\y=3\end{cases}}}\)
Vậy ...
x2+x+10⋮x+1x2+x+10⋮x+1
Mà x+1⋮x+1x+1⋮x+1
⇔⎧⎨⎩x2+x+1⋮x+1x2+x⋮x+1⇔{x2+x+1⋮x+1x2+x⋮x+1
⇔1⋮x+1⇔1⋮x+1
⇔x+1∈Ư(1)⇔x+1∈Ư(1)
⇔[x+1=1x+1=−1⇔[x+1=1x+1=−1
⇔[x=0x=−2⇔[x=0x=−2
Vậy ...
x2 + x + 1 \(⋮\)x +1
\(\Rightarrow\)x(x + 1) + 1 \(⋮\)x + 1
\(\Leftrightarrow\)1 \(⋮\)x + 1
\(\Leftrightarrow\)x + 1 \(\in\)Ư(1) = {\(\pm\)1}
\(\Leftrightarrow\)x \(\in\){0 ; - 2}