K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 2 2021

Ta có A = 5x2 - 2xy + 2y2 - 4x + 2y + 3

=> 2A = 10x2 - 4xy + 4y2 - 8x + 4y + 6

= (x2 - 4xy + 4y2) - 2(x - 2y) + 1 + 9x2 - 6x + 1 + 4

\(\left(x-2y\right)^2-2\left(x-2y\right)+1+9\left(x^2-\frac{2}{3}x+\frac{1}{9}\right)+4\)

\(=\left(x-2y-1\right)^2+9\left(x-\frac{1}{3}\right)^2+4\)\(\ge4\)

=> A \(\ge\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}x-2y-=0\\x-\frac{1}{3}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x-2y=1\\x=\frac{1}{3}\end{cases}}\Leftrightarrow\hept{\begin{cases}y=-\frac{1}{3}\\x=\frac{1}{3}\end{cases}}\)

Vậy khi x = 1/3 ; y = -1/3 thì A đạt GTNN

7 tháng 2 2021

\(A=5x^2+2y^2-2xy-4x+2y\)\(+3\)

\(=\left(x^2-2xy+y^2\right)+\)\(\left(4x^2-4x+1\right)+\)\(\left(y^2+2y+1\right)+1\)

\(Tacó\)

23 tháng 11 2017

giúp mình với

26 tháng 9 2020

XIN LỖI ! MÌNH KHONG BIẾT

14 tháng 10 2018

Câu 1 :

\(E=4x^2+y^2-4x-2y+3\)

\(E=\left(2x\right)^2-2\cdot2x\cdot1+1^2+y^2-2\cdot y\cdot1+1^2+1\)

\(E=\left(2x-1\right)^2+\left(y-1\right)^2+1\ge1\forall x;y\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}2x-1=0\\y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=1\end{cases}}\)

Câu 2 :

\(G=x^2+2y^2+2xy-2y\)

\(G=x^2+2xy+y^2+y^2-2.y\cdot1+1^2-1\)

\(G=\left(x+y\right)^2+\left(y-1\right)^2-1\ge-1\forall x;y\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x+y=0\\y-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+1=0\\y=1\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-1\\y=1\end{cases}}}\)

14 tháng 10 2018

Còn câu F bạn ơi. Giúp Gk vs

11 tháng 2 2022

Câu 1 :

\(3\left(x-3\right)\left(x+7\right)+\left(1-4\right)\left(x+4\right)+18\)

\(=3\left(x^2+4x-21\right)-3\left(x+4\right)\)

\(=3x^2+12x-63-3x-12=3x^2+9x-75\)

Thay x = 1/2 vào ta được 

\(\dfrac{3.1}{4}+\dfrac{9}{2}-75=-\dfrac{279}{4}\)

Câu 2 : 

\(5x^2+5xy+5x=5x\left(x+y+1\right)\)

Thay x = 60 ; y = 50 ta được 

\(300\left(60+50+1\right)=33300\)

Câu 3 : 

\(4x^2y^2+2xy^2+6x^2y=2xy\left(2xy+y+3x\right)\)

Thay x = 10 ; y  = 1/2 ta được 

\(\dfrac{2.10.1}{2}\left(\dfrac{2.10.1}{2}+\dfrac{1}{2}+30\right)=405\)

1: \(=3\left(x^2+4x-21\right)+x^2-16+18\)

\(=3x^2+12x-63+x^2+2\)

\(=4x^2+12x-61\)

\(=4\cdot\dfrac{1}{4}+12\cdot\dfrac{1}{2}-61=1-61+6=-54\)

2: \(=5\cdot60^2+5\cdot60\cdot50+5\cdot60=33300\)

3: \(=4\cdot10^2\cdot\dfrac{1}{4}+2\cdot10\cdot\dfrac{1}{4}+6\cdot100\cdot\dfrac{1}{2}=405\)

27 tháng 5 2021

\(M=5x^2+y^2-2x+2y+2xy+2004\)

\(=\left(x^2+2x+1\right)+2y\left(x+1\right)+y^2+4x^2-4x+1+2002\)

\(=\left(x+1\right)^2+2y\left(x+1\right)+y^2+\left(2x-1\right)^2+2002\)

\(=\left(x+1+y\right)^2+\left(2x-1\right)^2+2003\ge2002\) với mọi x,y

=> \(M_{min}=2002\Leftrightarrow\left\{{}\begin{matrix}x+y+1=0\\2x-1=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=-\dfrac{3}{2}\\x=\dfrac{1}{2}\end{matrix}\right.\)

Vậy \(M_{min}=2002\)

27 tháng 5 2021

Dòng 4 toi viết nhầm nha, là +2002 

28 tháng 12 2017

Có x^2 + 2xy + 4x + 4y + 2y^2 + 3 = 0

--> (x+y)^2 + 4(x+y) + 4+ y^2 - 1 = 0

--> (x+y+2)^2 + y^2 = 1

-->(x+y+2)^2 <= 1 ( vì y^2 >=1)

--> -1 <= x+y+2 <=1

--> 2015 <= x+y+2018 <= 2017

hay 2015 <= Q , dau bang xay ra khi x+y+2=-1 --> x+y=-3

Q<=2017, dau bang xay ra khi  x+y+2=1 --> x+y=-1

Vậy giá trị nhỏ nhất của Q là 2015 khi x+y =-3

 giá trị lớn nhất của Q là 2017 khi x+y=-1

14 tháng 5 2020

giá trị lớn nhất là 2017

21 tháng 10 2023

a: A=(x-1)(x-3)(x2-4x+5)

\(=\left(x^2-4x+3\right)\left(x^2-4x+5\right)\)

\(=\left(x^2-4x\right)^2+8\left(x^2-4x\right)+15\)

\(=\left(x^2-4x+4\right)^2-1\)

\(=\left(x-2\right)^4-1>=-1\)

Dấu = xảy ra khi x-2=0

=>x=2

b: \(B=x^2-2xy+2y^2-2y+1\)

\(=x^2-2xy+y^2+y^2-2y+1\)

\(=\left(x-y\right)^2+\left(y-1\right)^2>=0\)

Dấu = xảy ra khi x-y=0 và y-1=0

=>x=y=1

c: \(C=5+\left(1-x\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)\)

\(=-\left(x-1\right)\left(x+6\right)\left(x+2\right)\left(x+3\right)+5\)

\(=-\left(x^2+5x-6\right)\left(x^2+5x+6\right)+5\)

\(=-\left[\left(x^2+5x\right)^2-36\right]+5\)

\(=-\left(x^2+5x\right)^2+36+5\)

\(=-\left(x^2+5x\right)^2+41< =41\)

Dấu = xảy ra khi \(x^2+5x=0\)

=>x(x+5)=0

=>\(\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)

9 tháng 3 2020

a) \(A=4x^2-12x+100=\left(2x\right)^2-12x+3^2+91=\left(2x-3\right)^2+91\)

Ta có: \(\left(2x-3\right)^2\ge0\forall x\inℤ\)

\(\Rightarrow\left(2x-3\right)^2+91\ge91\)

hay A \(\ge91\)

Dấu "=" xảy ra <=> \(\left(2x-3\right)^2=0\)

<=> 2x-3=0

<=> 2x=3

<=> \(x=\frac{3}{2}\)

Vậy Min A=91 đạt được khi \(x=\frac{3}{2}\)

b) \(B=-x^2-x+1=-\left(x^2+x-1\right)=-\left(x^2+x+\frac{1}{4}-\frac{5}{4}\right)=-\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\)

Ta có: \(-\left(x+\frac{1}{2}\right)^2\le0\forall x\)

\(\Rightarrow-\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\le\frac{5}{4}\) hay B\(\le\frac{5}{4}\)

Dấu "=" \(\Leftrightarrow-\left(x+\frac{1}{2}\right)^2=0\)

\(\Leftrightarrow x+\frac{1}{2}=0\)

\(\Leftrightarrow x=\frac{-1}{2}\)

Vậy Max B=\(\frac{5}{4}\)đạt được khi \(x=\frac{-1}{2}\)

9 tháng 3 2020

\(C=2x^2+2xy+y^2-2x+2y+2\)

\(C=x^2+2x\left(y-1\right)+\left(y-1\right)^2+x^2+1\)

\(\Leftrightarrow C=\left(x+y-1\right)^2+x^2+1\)

Ta có: 

\(\hept{\begin{cases}\left(x+y-1\right)^2\ge0\forall x;y\inℤ\\x^2\ge0\forall x\inℤ\end{cases}}\)

\(\Leftrightarrow\left(x+y-1\right)^2+x^2+1\ge1\)

hay C\(\ge\)1

Dấu "=" xảy ra khi \(\hept{\begin{cases}\left(x+y-1\right)^2=0\\x^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+y=1\\x=0\end{cases}\Leftrightarrow}\hept{\begin{cases}y=1\\x=0\end{cases}}}\)

Vậy Min C=1 đạt được khi y=1 và x=0