(x+1)+(x+2)+(x+3)+.......+(x+2019)=2059380
Giải kĩ giúp mk nhé
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ix-2I*(x-5)<0
lx-2l lớn hơn or bằng 0 nên (x-5)<0 hay x<5
b, Ix-2I*(x-5)>0
lx-2l lớn hơn or bằng 0 nên (x-5)>0 hay x>5
\(P=\dfrac{x}{\sqrt{y}}+\dfrac{y}{\sqrt{x}}\Rightarrow P^2=\dfrac{x^2}{y}+\dfrac{y^2}{x}+2\sqrt{xy}\)
\(P^2=\left(\dfrac{x^2}{y}+\sqrt{xy}+\sqrt{xy}\right)+\left(\dfrac{y^2}{x}+\sqrt{xy}+\sqrt{xy}\right)-2\sqrt{xy}\)
\(P^2\ge3x+3y-2\sqrt{xy}\ge3\left(x+y\right)-\left(x+y\right)=2\left(x+y\right)=4038\)
\(\Rightarrow P\ge\sqrt{4038}\)
Dấu "=" xảy ra khi \(x=y=\dfrac{2019}{2}\)
Ta có:
\(P=\dfrac{x}{\sqrt{2019-x}}+\dfrac{y}{\sqrt{y-2019}}=\dfrac{x}{\sqrt{y}}+\dfrac{y}{\sqrt{x}}\ge\dfrac{\left(\sqrt{x}+\sqrt{y}\right)^2}{\sqrt{x}+\sqrt{y}}=\sqrt{x}+\sqrt{y}\)
Lại có:
\(P=\dfrac{x}{\sqrt{2019-x}}+\dfrac{y}{\sqrt{2019-y}}=\dfrac{2019-y}{\sqrt{y}}+\dfrac{2019-x}{\sqrt{x}}\\ =\dfrac{2019}{\sqrt{x}}+\dfrac{2019}{\sqrt{y}}-\sqrt{x}-\sqrt{y}\)
\(\Rightarrow2P=\dfrac{2019}{\sqrt{x}}+\dfrac{2019}{\sqrt{y}}=2019\left(\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}\right)\ge2019\cdot\dfrac{2}{\sqrt[4]{xy}}\\ \ge2019\dfrac{2}{\sqrt[2]{\dfrac{x+y}{2}}}=2019\cdot\dfrac{2}{\sqrt{\dfrac{2019}{2}}}=2\sqrt{2}\sqrt{2019}\)
\(\Rightarrow P\ge\sqrt{2}\sqrt{2019}\)
Dấu = khi \(x=y=\dfrac{2019}{2}\)
Cho a,b,c khác 0 t/m:
1/a+1/b+1/c=1/2018 và a+b+c=2018
cmr" 1/a^2019+1/b^2019+1/c^2019=1/(a^2019+b^2019+c^2019)
Ta có :
gt⇒x2−xy−(5x−5y)−x+8=0⇒(x−y)(x−5)−(x−5)=−3⇒(5−x)(x−y−1)=3gt⇒x2−xy−(5x−5y)−x+8=0⇒(x−y)(x−5)−(x−5)=−3⇒(5−x)(x−y−1)=3
Đến đây là dạng của phương trình ước số bạn chỉ cần xét ước của 33 là sẽ tìm được nghiệm nguyên của PT
mk từng làm dạng này rồi chỉ khác 1 chút thôi
C = 1 + 3 + 3^2 +...+3^10 +3^11 chia hết cho 13
=( 1+3+3^2) + ( 3^3 + 3^4 + 3^5) + ....+(3^9 + 3^10 + 3^11)
=(1+3 +9) + 3^3+(1+3+3^2) + ........+3^9 +(1+3+3^2)
=13 + 3^3 . 13 +....+ 3^9 . 13
=13. (1+3^3+....+3^9) chia hết cho 13
=>C chia hết cho 13
cứ theo cách đấy mà làm
a) \(|2x-2|+|3-3x|=125\left(1\right)\)
Ta có:
\(2x-2=0\Leftrightarrow x=1\)
\(3-3x=0\Leftrightarrow x=1\)
Lập bảng xét dấu :
2x-2 3-3x 1 0 0 - - + +
Với \(x< 1\Rightarrow\hept{\begin{cases}2x-2< 0\\3-3x>0\end{cases}\Rightarrow\hept{\begin{cases}|2x-2|=2-2x\\|3-3x|=3-3x\end{cases}}\left(2\right)}\)
Thay (2) vào (1) ta được :
\(\left(2-2x\right)+\left(3-3x\right)=125\)
\(2-2x+3-3x=125\)
\(-5x+5=125\)
\(-5x=120\)
\(x=-24\)( chọn )
Với \(x\ge1\Rightarrow\hept{\begin{cases}2x-2>0\\3-3x< 0\end{cases}}\Rightarrow\hept{\begin{cases}|2x-2|=2x-2\\|3-3x|=3x-3\end{cases}\left(3\right)}\)
Thay (3) vào (1) ta được :
\(\left(2x-2\right)+\left(3x-3\right)=125\)
\(2x-2+3x-3=125\)
\(5x-5=125\)
\(5x=130\)
\(x=26\)9 (CHọn )
Vậy \(x\in\left\{-24;26\right\}\)
b) \(|x-2018|+|x-2019|=1\left(1\right)\)
Ta có: \(x-2018=0\Leftrightarrow x=2018\)
\(x-2019=0\Leftrightarrow x=2019\)
Lập bảng xét dấu :
x-2018 x-2019 2018 0 2019 0 - - - + + +
+) Với \(x< 2018\Rightarrow\hept{\begin{cases}x-2018< 0\\x-2019< 0\end{cases}\Rightarrow\hept{\begin{cases}|x-2018|=2018-x\\|x-2019|=2019-x\end{cases}\left(2\right)}}\)
Thay (2) vào (1) ta được :
\(\left(2018-x\right)+\left(2019-x\right)=1\)
\(2018-x+2019-x=1\)
\(4037-2x=1\)
\(2x=4036\)
\(x=2018\)( Loại )
+) Với \(2018\le x< 2019\Rightarrow\hept{\begin{cases}x-2018>0\\x-2019< 0\end{cases}\Rightarrow\hept{\begin{cases}|x-2018|=x-2018\\|x-2019|=2019-x\end{cases}\left(3\right)}}\)
Thay (3) vào (1) ta được :
\(\left(x-2018\right)+\left(2019-x\right)=1\)
\(x-2018+2019-x=1\)
\(1=1\)( luôn đúng )
+) Với \(x\ge2019\Rightarrow\hept{\begin{cases}x-2018>0\\x-2019>0\end{cases}\Rightarrow\hept{\begin{cases}|x-2018|=x-2018\\|x-2019|=x-2019\end{cases}\left(4\right)}}\)
Thay (4) vào (1) ta được :
\(\left(x-2018\right)+\left(x-2019\right)=1\)
\(2x-4037=1\)
\(x=2019\)( Chọn )
Vậy \(2018\le x\le2019\)
(x+1)+(x+2)+(x+3)+...+(x+2019)=2059380
x*2019+((2019+1)*2019:2)=2059380
x*2019+2039190=2059380
x*2019=20190
vậy x=20190:2019
x=10