Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\frac{1}{a}+\frac{1}{b}+\frac{4}{c}\ge\frac{4}{a+b}+\frac{4}{c}=4\left(\frac{1}{a+b}+\frac{1}{c}\right)\ge4\frac{4}{a+b+c}=4.\frac{4}{6}=\frac{8}{3}\)
\(\Rightarrow-\left(\frac{1}{a}+\frac{1}{b}+\frac{4}{c}\right)\le\frac{-8}{3}\)
\(\Rightarrow M=1-\frac{1}{a}+1-\frac{1}{b}+1-\frac{4}{c}\)
\(=3-\left(\frac{1}{a}+\frac{1}{b}+\frac{4}{c}\right)\le3-\frac{8}{3}=\frac{1}{3}\)
\(\Rightarrow M\le\frac{1}{3}\)
Dấu '=' xảy ra \(\Leftrightarrow\hept{\begin{cases}a=b\\a+b=c\\a+b+c=6\end{cases}\Leftrightarrow\hept{\begin{cases}a=b=\frac{3}{2}\\c=3\end{cases}}}\)
Vậy GTLN của M là 1/3
\(5=a+b=a+\frac{b}{2}+\frac{b}{2}\ge3.\sqrt[3]{a.\frac{b}{2}.\frac{b}{2}}\)
\(\Rightarrow ab^2\le4.\left(\frac{5}{3}\right)^3=\frac{500}{27}\)
Vậy max P = 500/27 khi \(\hept{\begin{cases}a=\frac{b}{2}\\a+b=5\end{cases}}\Leftrightarrow\hept{\begin{cases}a=\frac{5}{3}\\b=\frac{10}{3}\end{cases}}\)
Với 2 số x,y > 0 Theo Cauchy ta có: \(\frac{x+y}{2}\ge\sqrt{xy}\Rightarrow\frac{\left(x+y\right)^2}{4}\ge xy\Rightarrow\frac{x+y}{xy}\ge\frac{4}{x+y}\)
\(\Rightarrow\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}^{\left(1\right)}\)
\(P=\frac{a-1}{a}+\frac{b-1}{b}+\frac{c-4}{c}=1-\frac{1}{a}+1-\frac{1}{b}+1-\frac{4}{c}\)
\(=3-\left(\frac{1}{a}+\frac{1}{b}+\frac{4}{c}\right)\)
Áp dụng (1) ta có:\(\frac{1}{a}+\frac{1}{b}+\frac{4}{c}\ge\frac{4}{a+b}+\frac{4}{c}=4\left(\frac{1}{a+b}+\frac{1}{c}\right)\ge4\cdot\frac{4}{a+b+c}=\frac{16}{6}=\frac{8}{3}\)
\(\Rightarrow3-\left(\frac{1}{a}+\frac{1}{b}+\frac{4}{c}\right)\le3-\frac{8}{3}=\frac{1}{3}\)
Đẳng thức xảy ra khi a=b và (a+b)=c hay a=b=1,5 và c=3.
Với a, b dương:
\(8^2=\left(\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}\right)^2\ge\frac{4}{\sqrt{ab}}\)
\(\Rightarrow\frac{1}{\sqrt{ab}}\le\frac{64}{4}=16\)
max A=16 khi a=b=1/4
\(a^3+b^3+3\left(a^2+b^2\right)+4\left(a+b\right)+4\)
\(=\left(a+b\right)\left(a^2-ab+b^2\right)+2a^2+2b^2-2ab+a^2+b^2+2ab+2.2a+2.2b+2^2\)
\(=\left(a+b+2\right)\left(a^2-ab+b^2\right)+\left(a+b+2\right)^2\)
\(=\left(a+b+2\right)\left(a^2-ab+b^2+a+b+2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a+b+2=0\\a^2-ab+b^2+a+b+2=0\end{cases}}\)
Ta có: \(a^2-ab+b^2+a+b+2=\frac{1}{2}a^2-ab+\frac{1}{2}b^2+\frac{1}{4}a^2+a+1+\frac{1}{4}b^2+b+1+\frac{1}{4}\left(a^2+b^2\right)\)
\(=\frac{1}{2}\left(a-b\right)^2+\frac{1}{4}\left(a+2\right)^2+\frac{1}{4}\left(b+2\right)^2+\frac{1}{4}\left(a^2+b^2\right)>0,\forall a,b\inℝ\).
Suy ra \(a+b+2=0\Leftrightarrow a+b=-2\)
mà \(ab>0\Rightarrow\hept{\begin{cases}a< 0\\b< 0\end{cases}}\).
\(Q=\frac{1}{a}+\frac{1}{b}=-\left(\frac{1}{-a}+\frac{1}{-b}\right)\le-\frac{\left(1+1\right)^2}{-a-b}=-2\)
Dấu \(=\)xảy ra khi \(a=b=-1\).