K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 1 2018

2, TA có:

x + y + xy = 40

=> x(y + 1) + y + 1 = 41

=> (x + 1)(y + 1) = 41

=> x + 1 thuộc Ư(41) = {1; 41}

Xét từng trường hợp rồi thay vào tìm y

3 tháng 1 2018

Có lẽ các bạn thấy hơi dài nhưng các bạn có thể làm 1 trong 3 câu cũng được. Nhưng đừng làm sai nhé! Hihihi...

2 tháng 3 2020

Bài 2: 

Gọi số đó là n

Theo bài ra ta có:

\(n:11\)dư 6 \(\Rightarrow n-6⋮11\Rightarrow n-6+33⋮11\Leftrightarrow n+27⋮11\)

\(n:4\)dư 1 \(\Rightarrow n-1⋮4\Rightarrow n-1+28⋮4\Leftrightarrow n+27⋮4\)

\(n:19\)dư 11 \(\Rightarrow n-11⋮19\Rightarrow n-6+38⋮19\Leftrightarrow n+27⋮19\)

\(\Rightarrow n+27⋮11;4;9\)

Có: \(n+27\)nhỏ nhất \(\Leftrightarrow n+7=BCNN\left(11;4;9\right)=836\)

\(\Rightarrow n=836-27=809\)

Vậy số tự nhiên nhỏ nhất cần tìm là: \(809\) 

AH
Akai Haruma
Giáo viên
18 tháng 3 2021

Lời giải:

Gọi số tự nhiên thỏa mãn đề là $n$. Vì số đó chia $3,4,5,6$ đều dư $2$ nên số đó sẽ có dạng

$n=BCNN(3,4,5,6).k+2$ với $k$ tự nhiên 

$n=60k+2$

$n$ chia $7$ dư $3$ nghĩa là $n-3\vdots 7$

$\Leftrightarrow 60k-1\vdots 7$

$\Leftrightarrow 63k-(60k-1)\vdots 7$

$\Leftrightarrow 3k+1\vdots 7$

$\Leftrightarrow 3k-6\vdots 7$

$\Leftrightarrow k-2\vdots 7$ nên $k=7t+2$ với $t$ tự nhiên.

Thay vô $n$ thì $n=60k+2=60(7t+2)+2=420t+122$

Vì $t\geq 0$ nên $n\geq 122$

Vậy số tự nhiên nhỏ nhất thỏa đề là $122$

7 tháng 2 2017

Bài 1:

Theo đề bài ta có:

\(a=4q_1+3=9q_2+5\) (\(q_1\)\(q_2\) là thương trong hai phép chia)

\(\Rightarrow\left[\begin{matrix}a+13=4q_1+3+13=4\left(q_1+4\right)\left(1\right)\\a+13=9q_2+5+13=9\left(q_2+2\right)\left(2\right)\end{matrix}\right.\)

Từ (1) và (2) suy ra: \(a+13=BC\left(4;9\right)\)

\(Ư\left(4;9\right)=1\Rightarrow a+13=BC\left(4;9\right)=4.9=36\)

\(\Rightarrow a+13=36k\left(k\ne0\right)\)

\(\Rightarrow a=36k-13=36\left(k-1\right)+23\)

Vậy \(a\div36\)\(23\)

7 tháng 2 2017

Câu 1

Theo bài ra ta có:

\(a=4q_1+3=9q_2+5\)(q1 và q2 là thương của 2 phép chia)

\(\Rightarrow a+13=4q_1+3+13=4\left(q_1+4\right)\left(1\right)\)

\(a+13=9q_2+5+13=9.\left(q_2+2\right)\left(2\right)\)

Từ (1) và (2) ta có \(a+13\) là bội của 4 và 9 mà ƯC(4;9)=1

nên a là bội của 4.9=36

\(\Rightarrow a+13=36k\left(k\in N\right)\)

\(\Rightarrow a=36k-13\)

\(\Rightarrow a=36.\left(k-1\right)+23\)

Vậy a chia 36 dư 23