Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có SA \( \bot \) (ABC) nên A là hình chiếu của S trên (ABC)
b) A là hình chiếu của S trên (ABC)
B là hình chiếu của B trên (ABC)
C là hình chiếu của C trên (ABC)
\( \Rightarrow \) Tam giác ABC là hình chiếu của tam giác SBC.
c) B là hình chiếu của C trên (SAB)
S, B là hình chiếu của chính nó trên (SAB)
\( \Rightarrow \) SB là hình chiếu của tam giác SBC trên (SAB)
Đáp án B
Vì hai tam giác ABC và SBC đều và có chung cạnh BC nên bằng nhau ⇒ A H = S H .
Mà Δ H S A vuông tại H nên vuông cân
⇒ S A H ^ = 45 °
Chọn C.
- Gọi H là trung điểm của BC. Suy ra:
- Ta có:
- Do H là hình chiếu của S lên mp(ABC) nên góc giữa đường thẳng SA và mp (ABC) là góc
- Xét tam giác vuông SHA có:
Đáp án là D
Gọi H là trung điểm B C . Ta có A H là hình chiếu vuông góc của S A lên mặt phẳng A B C .
Khi đó S A ; A B C ^ = S A ; A H ^ = S A H ^
Ta có S H = A H S H ⊥ A H ⇒ Δ S A H vuông cân tại - H ⇒ S A H ^ = 45 0 .