K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 12 2021

a: \(=x^2-1-x^2-x+6=-x+5\)

\(\dfrac{A}{B}=\dfrac{6x^3+3x^2-10x^2-5x+4x+2+m-2}{2x+1}\)

\(=3x^2-5x+2+\dfrac{m-2}{2x+1}\)

3 tháng 3 2020

2.1

a) Áp dụng định lý Bezout:

\(P\left(x\right)⋮2x+3\)

\(\Rightarrow P\left(\frac{-3}{2}\right)=0\)

hay \(6.\frac{-27}{8}-7.\frac{9}{4}-16.\frac{-3}{2}+m=0\)

\(\Leftrightarrow\frac{-81}{4}-\frac{63}{4}+24+m=0\)

\(\Rightarrow m=12\)

Vậy m = 12 

15 tháng 12 2021

\(a,n^3-2n^2+3n+3=n^3-n^2-n^2+n+2n-2+5\\ =\left(n-1\right)\left(n^2-n+2\right)+5\\ \Leftrightarrow n^3-2n^2+3n+3⋮\left(n-1\right)\\ \Leftrightarrow5⋮n-1\\ \Leftrightarrow n-1\in\left\{-5;-1;1;5\right\}\\ \Leftrightarrow n\in\left\{-4;0;2;6\right\}\)

 

15 tháng 12 2021

\(b,\Leftrightarrow x^4+6x^3+7x^2-6x+a\\ =x^4+3x^3-x^2+3x^3+9x^2-3x-x^2-3x+1-1+a\\ =\left(x^2+3x-1\right)\left(x^2+3x-1\right)-1+a\\ =\left(x^2+3x-1\right)^2+a-1\)

Để \(x^4+6x^3+7x^2-6x+a⋮x^2+3x-1\)

\(\Leftrightarrow a-1=0\Leftrightarrow a=1\)

 

31 tháng 8 2017

Giải trên máy Casio fx-570MS ( Casio fx-570 tương tự)

Nhắc lại: Đa thức P(x) chia hết cho ax + b khi và chỉ khi P(-ba)=0

              Dư của phép chia đa thức P(x) cho ax + b là P(-ba)

Quy trình bấm phím như sau:

1. Ghi vào màn hình: 6A3 -7A2 -16A

31 tháng 8 2017

cám ơn bạn nha!

30 tháng 11 2021

\(=\dfrac{6x^3+3x^2-10x^2-5x+4x+2}{2x+1}=3x^2-5x+2\)

30 tháng 11 2021

=3x2-5x+2

\(\dfrac{A}{B}=\dfrac{6x^3+3x^2-10x^2-5x+4x+2+m-2}{2x+1}\)

\(=3x^2-5x+2+\dfrac{m-2}{2x+1}\)

31 tháng 10 2017

Ta có: P(x) - Q(x) + R(x)

=(-5x3 + 7x2 - x + 8) - (4x3 - 7x + 3) - (6x3 + 4x)

=-5x3 + 7x2 - x + 8 - 4x3 + 7x - 3 + 6x3 + 4x

= -3x3 + 7x2 + 10x + 5. Chọn D

13 tháng 8 2017

Bài 1:

a, \(A=x\left(6-x\right)+74+x=-x^2+6x+74+x=-x^2+7x+74\)

\(=-\left(x^2-2\cdot x\cdot3,5+\dfrac{49}{4}\right)+\dfrac{345}{4}\)

\(=-\left(x-3,5\right)^2+\dfrac{345}{4}\)

Có: \(-\left(x-3,5\right)^2\le0\forall x\)

\(\Rightarrow-\left(x-3,5\right)^2+\dfrac{345}{4}\le\dfrac{345}{4}\)

Dấu ''='' xảy ra khi x = 3,5

Vậy A_max = \(\dfrac{345}{4}\) khi x = 3,5

b, \(B=5x-x^2=-x^2+5x-\dfrac{25}{4}+\dfrac{25}{4}\)

\(=-\left(x^2-2\cdot x\cdot2,5+\dfrac{25}{4}\right)+\dfrac{25}{4}\)

\(=-\left(x-2,5\right)^2+\dfrac{25}{4}\)

Có: \(-\left(x-2,5\right)^2\le0\forall x\)

\(\Rightarrow-\left(x-2,5\right)^2+\dfrac{25}{4}\le\dfrac{25}{4}\)

Dấu ''='' xảy ra khi x = 2,5

Vậy B_max = \(\dfrac{25}{4}\) khi x = 2,5

13 tháng 8 2017

Bài 2:

a, m = 12 (cái này dùng máy tính mà bấm, nhanh gọn lẹ)

b, Không đặt phép tính đc, vs lại ý này dễ, tính tay --> r = 0

c, \(P\left(x\right)=6x^3-7x^2-16x+12\)

\(=6\left(x+\dfrac{3}{2}\right)\left(x-2\right)\left(x-\dfrac{2}{3}\right)\)

\(=\left(2x+3\right)\left(x-2\right)\left(3x-2\right)\)