Bài 3. Xác định m để hệ bất phương trình sau có nghiệm, vô nghiệm, có nghiệm duy nhất?a)
b) c)
d) e)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Để pt có 2 nghiệm pb khi \(\Delta>0\)
\(\Delta=\left(-2m\right)^2-4\left(m+6\right)=4m^2-4m-24>0\Leftrightarrow m< -2;m>3\)
b, Để pt trên là pt bậc 2 khi \(m\ne0\)
Để pt vô nghiệm khi \(\Delta< 0\)
\(\Delta=4m^2-4m\left(m+3\right)=4m^2-4m^2-12m< 0\Leftrightarrow-12m< 0\Leftrightarrow m>0\)
c, Để pt trên là pt bậc 2 khi \(m\ne2\)
Để pt trên có nghiệm kép \(\Delta=0\)
\(\Delta=\left(2m-3\right)^2-4\left(m+1\right)\left(m-2\right)=4m^2-12m+9-4\left(m^2-m-2\right)\)
\(=-8m+17=0\Leftrightarrow m=\frac{17}{8}\)
a) Ta có: \(\text{Δ}=\left(2m\right)^2-4\cdot1\cdot\left(-3m-2\right)=4m^2+12m+8=4m^2+12m+9-1=\left(2m+3\right)^2-1\)
Để phương trình có hai nghiệm phân biệt thì Δ>0
\(\Leftrightarrow\left(2m+3\right)^2>1\)
\(\Leftrightarrow\left[{}\begin{matrix}2m+3>1\\2m+3< -1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2m>-2\\2m< -4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m>-1\\m< -2\end{matrix}\right.\)
Áp dụng hệ thức Vi-et, ta được:
\(\left\{{}\begin{matrix}x_1+x_2=-2m\\x_1\cdot x_2=-3m-2\end{matrix}\right.\)
Ta có: \(\left\{{}\begin{matrix}x_1+x_2=-2m\\2x_1-3x_2=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x_1+2x_2=-4m\\2x_1-3x_2=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5x_2=-4m-1\\x_1+x_2=-2m\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_2=\dfrac{-4m-1}{5}\\x_1=-2m+\dfrac{4m+1}{5}=\dfrac{-6m+1}{5}\end{matrix}\right.\)
Ta có: \(x_1\cdot x_2=-3m-2\)
\(\Leftrightarrow\dfrac{-4m-1}{5}\cdot\dfrac{-6m+1}{5}=-3m-2\)
\(\Leftrightarrow\left(-4m-1\right)\left(-6m+1\right)=25\left(-3m-2\right)\)
\(\Leftrightarrow24m^2-4m+6m-1=-75m+50\)
\(\Leftrightarrow24m^2+2m-1+75m-50=0\)
\(\Leftrightarrow24m^2+77m-51=0\)
Đến đây bạn tự làm nhé