CMR: p và p+2 là hai số nguyên tố >3,tổng của chúng chia hết cho 12
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2 : c)
+Nếu p = 2 ⇒ p + 2 = 4 (loại)
+Nếu p = 3 ⇒ p + 6 = 9 (loại)
+Nếu p = 5 ⇒ p + 2 = 7, p + 6 = 11, p + 8 = 13, p + 12 = 17, p + 14 = 19 (thỏa mãn)
+Nếu p > 5, ta có vì p là số nguyên tố nên ⇒ p không chia hết cho 5 ⇒ p = 5k+1, p = 5k+2, p = 5k+3, p = 5k+4
-Với p = 5k + 1, ta có: p + 14 = 5k + 15 = 5 ( k+3) ⋮ 5 (loại)
-Với p = 5k + 2, ta có: p + 8 = 5k + 10 = 5 ( k+2 ) ⋮ 5 (loại)
-Với p = 5k + 3, ta có: p + 12 = 5k + 15 = 5 ( k+3) ⋮ 5 (loại)
-Với p = 5k + 4, ta có: p + 6 = 5k + 10 = 5 ( k+2) ⋮ 5 (loại)
⇒ không có giá trị nguyên tố p lớn hơn 5 thỏa mãn
Vậy p = 5 là giá trị cần tìm
Bài 4 : Tích của hai số tự nhiên là số nguyên tố nên một số là 1, số còn lại (kí hiệu a) là số nguyên tố.
Theo đề bài, 1 + a cũng là số nguyên tố. Xét hai trường hợp :
- Nếu 1 + a là số lẻ thì a là số chẵn. Do a là ....
Còn lại bạn tự làm nha , mình mỏi tay quá !
Ta có: p+(p+2)=2(p+1)
Vì p lẻ nên ( p + 1 ) ⋮ 2 = > 2 ( p + 1 ) ⋮ 4 (1)
Vì p, (p+1), (p+2) là 3 số tự nhiên liên tiếp nên có ít nhất một số chia hết cho 3, mà p và (p+2) nguyên tố nên ( p + 1 ) ⋮ 3 (2)
Từ (1) và (2) suy ra p + ( p + 2 ) ⋮ 12 (đpcm)
p + p + 2 = 2p +2 = 2(p +1) chia hết cho 2
p nguyên tố lớn hơn 3
< = > p chia 3 dư 1 => p + p +2 chia hết cho 3
p chia 3 dư 2 < = > p + p + 2 chia 3 dư 1
Bạn xem lại đề
p > 3
=> Đặt p = 3k + 1 hoặc p = 3k + 2
Khi p = 3k + 1
=> p + 2 = 3k + 3 = 3(k + 1)
=> p + 2 là hợp số (lọai)
Khi p = 3k + 2
=> p + 2 = 3k + 4 (tm)
=> p + p + 2 = 3k + 2 + 3k + 4 = 6k + 6 = 6(k + 1)
Khi k = 2t => 3k + 2 = 3.2t + 2 = 2(3t + 1)
=> 3k + 2 là họp số loại
Khi k = 2t + 1
=> 3k + 2 = 6t + 5 (tm)
3k + 4 = 6t + 7 (tm)
Khi đó p + p + 2 = 6(k + 1) = 6(2t + 1 + 1) = 6(2t + 2) = 12(t + 1) \(⋮\)12
Đặt A = p + p +2 = 2p +2 = 2(p +1)
p +2 = p -1 +3
Xét 3 số liên tiếp : p -1 , p , p +1 có 1 và chỉ 1 số chia hết cho 3
Vì p nguyên tố lớn hơn 3 nên p không chia hết cho 3. Mặt khác p -1 không chia hết cho 3, vì nếu chia hết cho 3 thì p +2 chia hết cho 3, trái với gt là p +2 là số nguyên tố >3. Vậy chỉ còn p+1 chia hết cho 3 => 2(p +1) chia hết cho 3 tức A chia hết cho 3 (*)
Ta lại có p nguyên tố >3 nên p là số lẻ => p = 2k +1 => A = 4k + 4 chia hết cho 4 (**)
mà (3,4) =1 (***)
Từ (*) , (**), (***) => A chia hết cho 12