K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a, \(\left(x+1\right)\left(y+3\right)=3\)

\(x+1;y+3\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

x + 11-13-3
y + 33-31-1
x0-22-4
y0-6-2-4

b, \(x^2-2xy=5\Rightarrow x\left(x-2y\right)=5\)

\(x;x-2y\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)

x1-15-5
x - 2y5-51-1
y-222-2

a: =>2xy+y=7

=>(2x+1)*y=7

=>(2x+1;y) thuộc {(1;7); (7;1); (-1;-7); (-7;-1)}

=>(x,y) thuộc {(0;7); (3;1); (-1;-7); (-4;-1)}

b: =>(2x+1)^2+(y+1)^2=179-169=10

=>((2x+1)^2;(y+1)^2) thuộc {(1;9); (9;1)}

TH1: (2x+1)^2=1 và (y+1)^2=9

=>\(\left\{{}\begin{matrix}2x+1\in\left\{1;-1\right\}\\y+1\in\left\{3;-3\right\}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\in\left\{0;-1\right\}\\y\in\left\{2;-4\right\}\end{matrix}\right.\)

TH2: (2x+1)^2=9 và (y+1)^2=1

=>\(\left\{{}\begin{matrix}2x+1\in\left\{3;-3\right\}\\y+1\in\left\{1;-1\right\}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\in\left\{1;-2\right\}\\y\in\left\{0;-2\right\}\end{matrix}\right.\)

5 tháng 8 2023

Các bạn làm nhanh hộ mình với ạ

AH
Akai Haruma
Giáo viên
10 tháng 8 2021

a.

$xy=-21=7.(-3)=(-7).3=3.(-7)=(-3).7=21.(-1)=(-21).1=(-1).21=1(-21)$

Do đó $(x,y)=(7,-3); (-7,3); (3,-7); (-3,7); (21,-1); (-21,1); (-1,21); (1,-21)$

b.

$(x+5)(y-3)=14=1.14=14.1=(-14)(-1)=(-1)(-14)=2.7=7.2=(-2)(-7)=(-7)(-2)$

Do đó:

$(x+5,y-3)=(1,14); (14,1); (-14,-1); (-1,-14); (2,7); (7,2); (-2,-7); (-7,-2)$

Đến đây thì đơn giản rồi.

c.

$x(y-2)=-19$, bạn làm tương tự

d. Tương tự

 

15 tháng 2 2021

 

 

\(\dfrac{x}{3}=\dfrac{y}{7}\Rightarrow\dfrac{x}{y}=\dfrac{3}{7}\)

\(\dfrac{x}{y}-1=\dfrac{-5}{19}\Rightarrow\dfrac{x}{y}=\dfrac{14}{19}\)

Vô lí => không có x,y thỏa mãn

a) Ta có: \(\dfrac{x}{3}=\dfrac{y}{7}\)

nên \(\dfrac{x}{y}=\dfrac{3}{7}\)

b) Ta có: \(\dfrac{x}{y-1}=\dfrac{5}{-19}\)

\(\Leftrightarrow\dfrac{x}{5}=\dfrac{y-1}{-19}\)

hay \(\dfrac{x}{5}=\dfrac{1-y}{19}\)

9 tháng 2 2023

a) \(\left(x+y+1\right)^3=x^3+y^3+7\)

\(\Leftrightarrow\left(x+y\right)^3+3\left(x+y\right)\left(x+y+1\right)+1=x^3+y^3+7\)

\(\Leftrightarrow x^3+y^3+3xy\left(x+y\right)+3\left(x+y\right)\left(x+y+1\right)+1=x^3+y^3+7\)

\(\Leftrightarrow3\left(x+y\right)\left(x+y+xy+1\right)=6\)

\(\Leftrightarrow\left(x+y\right)\left[x\left(1+y\right)+1+y\right]=2\)

\(\Leftrightarrow\left(x+1\right)\left(y+1\right)\left(x+y\right)=2\)

\(\Rightarrow x+1,y+1,x+y\) là các ước của 2.

Ta thấy 6 có 2 dạng phân tích thành tích 3 số nguyên là \(\left(2;1;1\right)\) và\(\left(2;-1;-1\right)\).

- Xét trường hợp \(\left(2;1;1\right)\). Ta có 3 trường hợp nhỏ:

\(\left\{{}\begin{matrix}x+1=2\\y+1=1\\x+y=1\end{matrix}\right.\) ; \(\left\{{}\begin{matrix}x+1=1\\y+1=2\\x+y=1\end{matrix}\right.\) ; \(\left\{{}\begin{matrix}x+1=1\\y+1=1\\x+y=2\end{matrix}\right.\)

Giải ra ta có \(\left(x,y\right)=\left(1;0\right),\left(0;1\right)\).

- Xét trường hợp \(\left(2;-1;-1\right)\). Ta có 3 trường hợp nhỏ:

\(\left\{{}\begin{matrix}x+1=2\\y+1=-1\\x+y=-1\end{matrix}\right.\) ; \(\left\{{}\begin{matrix}x+1=-1\\y+1=2\\x+y=-1\end{matrix}\right.\) ; \(\left\{{}\begin{matrix}x+1=-1\\y+1=1\\x+y=2\end{matrix}\right.\).

Giải ra ta có: \(\left(x;y\right)=\left(1;-2\right),\left(-2;1\right)\).

Vậy \(\left(x;y\right)=\left(0;1\right),\left(1;0\right),\left(1;-2\right),\left(-2;1\right)\)

 

 

9 tháng 2 2023

b) \(y^2+2xy-8x^2-5x=2\)

\(\Leftrightarrow\left(x^2+2xy+y^2\right)-\left(9x^2+5x\right)=2\)

\(\Leftrightarrow\left(x+y\right)^2-9\left(x^2+\dfrac{5}{9}x+\dfrac{25}{324}\right)+\dfrac{25}{36}=2\)

\(\Leftrightarrow\left(x+y\right)^2-9\left(x+\dfrac{5}{18}\right)^2=\dfrac{47}{36}\)

\(\Leftrightarrow6^2.\left(x+y\right)^2-3^2.6^2\left(x+\dfrac{5}{18}\right)^2=47\)

\(\Leftrightarrow\left(6x+6y\right)^2-\left(18x+5\right)^2=47\)

\(\Leftrightarrow\left(6x+6y-18x-5\right)\left(6x+6y+18x+5\right)=47\)

\(\Leftrightarrow\left(6y-12x-5\right)\left(24x+6y+5\right)=47\)

\(\Rightarrow\)6y-12x-5 và 24x+6y+5 là các ước của 47.

Lập bảng:

6y-12x-5147-1-47
24x+6y+5471-47-1
x1\(\dfrac{-14}{9}\left(l\right)\)\(\dfrac{-14}{9}\left(l\right)\)1
y3\(\dfrac{50}{9}\left(l\right)\)\(-\dfrac{22}{9}\left(l\right)\)-5

Vậy pt đã cho có 2 nghiệm (x;y) nguyên là (1;3) và (1;-5)

 

Giải:

a) \(\dfrac{-5}{8}=\dfrac{x}{16}\) 

\(\Rightarrow x=\dfrac{16.-5}{8}=-10\) 

\(\dfrac{3x}{9}=\dfrac{2}{6}\) 

\(\Rightarrow3x=\dfrac{2.9}{6}=3\) 

\(\Rightarrow x=1\)

b) \(\dfrac{x+3}{15}=\dfrac{1}{3}\)  

\(\Rightarrow x+3=\dfrac{1.15}{3}=5\) 

\(\Rightarrow x=2\)

\(\dfrac{6}{2x+1}=\dfrac{2}{7}\) 

\(\Rightarrow2x+1=\dfrac{6.7}{2}=21\) 

\(\Rightarrow x=10\)

c) \(\dfrac{4}{x-6}=\dfrac{y}{24}=\dfrac{-12}{18}\) 

\(\Rightarrow\dfrac{4}{x-6}=\dfrac{-12}{18}\) 

\(\Rightarrow x-6=\dfrac{18.4}{-12}=-6\) 

\(\Rightarrow x=0\) 

\(\Rightarrow\dfrac{y}{24}=\dfrac{-12}{18}\) 

\(\Rightarrow y=\dfrac{-12.24}{18}=-16\) 

 \(\dfrac{3-x}{-12}=\dfrac{16}{y+1}=\dfrac{192}{-72}\) 

\(\Rightarrow\dfrac{3-x}{-12}=\dfrac{192}{-72}\) 

\(\Rightarrow3-x=\dfrac{192.-12}{-72}=32\) 

\(\Rightarrow x=-29\) 

\(\Rightarrow\dfrac{16}{y+1}=\dfrac{192}{-72}\) 

\(\Rightarrow y+1=\dfrac{16.-72}{192}=-6\) 

d) \(\dfrac{-2}{3}< \dfrac{x}{5}< \dfrac{-1}{6}\) 

\(\Rightarrow\dfrac{-20}{30}< \dfrac{6x}{30}< \dfrac{-5}{30}\) 

\(\Rightarrow6x\in\left\{-18;-12;-6\right\}\) 

\(\Rightarrow x\in\left\{-3;-2;-1\right\}\) 

\(\dfrac{-1}{5}\le\dfrac{x}{8}\le\dfrac{1}{4}\) 

\(\Rightarrow\dfrac{-8}{40}\le\dfrac{5x}{40}\le\dfrac{10}{40}\) 

\(\Rightarrow5x\in\left\{-5;0;5;10\right\}\) 

\(\Rightarrow x\in\left\{-1;0;1;2\right\}\) 

e) \(\dfrac{x+46}{20}=x\dfrac{2}{5}\) 

\(\Rightarrow\dfrac{x+46}{20}=x+\dfrac{2}{5}\) 

\(\Rightarrow\dfrac{x+46}{20}=\dfrac{5x+2}{5}\) 

\(\Rightarrow5.\left(x+46\right)=20.\left(5x+2\right)\) 

\(\Rightarrow5x+230=100x+40\) 

\(\Rightarrow5x-100x=40-230\) 

\(\Rightarrow-95x=-190\) 

\(\Rightarrow x=-190:-95\) 

\(\Rightarrow x=2\) 

\(y\dfrac{5}{y}=\dfrac{86}{y}\) 

\(\Rightarrow y+\dfrac{5}{y}=\dfrac{86}{y}\) 

\(\Rightarrow\dfrac{y^2+5}{y}=\dfrac{86}{y}\) 

\(\Rightarrow y^2+5=86\) 

\(\Rightarrow y^2=86-5\) 

\(\Rightarrow y^2=81\) 

\(\Rightarrow\left[{}\begin{matrix}y=9\\y=-9\end{matrix}\right.\) 

Chúc bạn học tốt!

Giải:

a) \(\left(x-1\right)\left(y+2\right)=7\) 

\(\Rightarrow\left(x-1\right)\) và \(\left(y+2\right)\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\) 

Ta có bảng giá trị:

x-1-7-117
y+2-1-771
x-6028
y-3-95-1

Vậy \(\left(x;y\right)=\left\{\left(-6;-3\right);\left(0;-9\right);\left(2;5\right);\left(8;-1\right)\right\}\) 

b) \(\left(x-2\right)\left(3y+1\right)=17\) 

\(\Rightarrow\left(x-2\right)\) và \(\left(3y+1\right)\inƯ\left(17\right)=\left\{\pm1;\pm17\right\}\) 

Ta có bảng giá trị:

x-2-17-1117
3y+1-1-17171
x-151319
y\(\dfrac{-2}{3}\) (loại)-6 (t/m)\(\dfrac{16}{3}\) (loại)0 (t/m)

Vậy \(\left(x;y\right)=\left\{\left(1;-6\right);\left(19;0\right)\right\}\)

30 tháng 6 2021

Ko ghi lại đề nhé 

a) \(TH1\left[{}\begin{matrix}x-1=1\\y+2=7\end{matrix}\right.=>\left[{}\begin{matrix}x=2\\y=5\end{matrix}\right.\)

\(TH2:\left[{}\begin{matrix}x-1=-1\\y+2=-7\end{matrix}\right.=>\left[{}\begin{matrix}x=0\\y=-9\end{matrix}\right.\)

\(TH3:\left[{}\begin{matrix}x-1=7\\y+2=1\end{matrix}\right.=>\left[{}\begin{matrix}x=8\\y=-1\end{matrix}\right.\)

\(TH4:\left[{}\begin{matrix}x-1=-7\\y+2=-1\end{matrix}\right.=>\left[{}\begin{matrix}x=-6\\y=-3\end{matrix}\right.\)

b) \(TH1:\left[{}\begin{matrix}x-2=1\\3y+1=17\end{matrix}\right.=>\left[{}\begin{matrix}x=3\\y=\dfrac{16}{3}\end{matrix}\right.=>Loại\)

\(TH2:\left[{}\begin{matrix}x-2=-1\\3y+1=-17\end{matrix}\right.=>\left[{}\begin{matrix}x=1\\y=-6\end{matrix}\right.Chọn\)

\(TH3:\left[{}\begin{matrix}x-2=17\\3y+1=1\end{matrix}\right.=>\left[{}\begin{matrix}x=19\\y=0\end{matrix}\right.=>Chọn\)

\(TH4:\left[{}\begin{matrix}x-2=-17\\3y+1=-1\end{matrix}\right.=>\left[{}\begin{matrix}x=-15\\y=\dfrac{-2}{3}\end{matrix}\right.=>Loại\)

Bạn tự kết luận hộ mk nha

NV
13 tháng 1

a.

\(\Leftrightarrow2x^2-4x+4y^2=4xy+4\)

\(\Leftrightarrow\left(x^2-4xy+4y^2\right)+\left(x^2-4x+4\right)=8\)

\(\Leftrightarrow\left(x-2y\right)^2+\left(x-2\right)^2=8\) (1)

Do \(\left(x-2y\right)^2\ge0;\forall x;y\)

\(\Rightarrow\left(x-2\right)^2\le8\)

\(\Rightarrow\left(x-2\right)^2=\left\{0;1;4\right\}\)

TH1: \(\left(x-2\right)^2\Rightarrow x=2\) thế vào (1)

\(\Rightarrow\left(2-2y\right)^2=8\Rightarrow\left(1-y\right)^2=2\) (ko tồn tại y nguyên t/m do 2 ko phải SCP)

TH2: \(\left(x-2\right)^2=1\Rightarrow\left(x-2y\right)^2=8-1=7\), mà 7 ko phải SCP nên pt ko có nghiệm nguyên

TH3: \(\left(x-2\right)^2=4\Rightarrow\left[{}\begin{matrix}x=4\\x=0\end{matrix}\right.\) thế vào (1):

- Với \(x=0\Rightarrow\left(-2y\right)^2+4=8\Rightarrow y^2=1\Rightarrow y=\pm1\)

- Với \(x=2\Rightarrow\left(2-2y\right)^2+4=8\Rightarrow\left(1-y\right)^2=1\Rightarrow\left[{}\begin{matrix}y=0\\y=2\end{matrix}\right.\)

Vậy pt có các cặp nghiệm là: 

\(\left(x;y\right)=\left(0;1\right);\left(0;-1\right);\left(2;0\right);\left(2;2\right)\)

NV
13 tháng 1

b.

\(\Leftrightarrow2x^2+4y^2+4xy-4x=14\)

\(\Leftrightarrow\left(x^2+4xy+4y^2\right)+\left(x^2-4x+4\right)=18\)

\(\Leftrightarrow\left(x+2y\right)^2+\left(x-2\right)^2=18\) (1)

Lý luận tương tự câu a ta được 

\(\left(x-2\right)^2\le18\Rightarrow\left(x-2\right)^2=\left\{0;1;4;9;16\right\}\)

Với \(\left(x-2\right)^2=\left\{0;1;4;16\right\}\) thì \(18-\left(x-2\right)^2\) ko phải SCP nên ko có giá trị nguyên x;y thỏa mãn

Với \(\left(x-2\right)^2=9\Rightarrow\left[{}\begin{matrix}x=5\\x=-1\end{matrix}\right.\) thế vào (1)

- Với \(x=5\Rightarrow\left(5+2y\right)^2+9=18\Rightarrow\left(5+2y\right)^2=9\)

\(\Rightarrow\left[{}\begin{matrix}5+2y=3\\5+2y=-3\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}y=-1\\y=-4\end{matrix}\right.\)

- Với \(x=-1\Rightarrow\left(-1+2y\right)^2=9\Rightarrow\left[{}\begin{matrix}-1+2y=3\\-1+2y=-3\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}y=2\\y=-1\end{matrix}\right.\)

Vậy \(\left(x;y\right)=\left(5;-1\right);\left(5;-4\right);\left(-1;3\right);\left(-1;-3\right)\)

NV
9 tháng 4 2021

\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(z^2-2z+1\right)< 1\)

\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-1\right)^2< 1\)

Nếu tồn tại 1 trong 3 số \(x-y;y-z;z-1\) khác 0

Do x; y; z nguyên

\(\Rightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge1\) (vô lý)

\(\Rightarrow x-y=y-z=z-1=0\)

\(\Leftrightarrow x=y=z=1\)

NV
26 tháng 11 2021

a.

\(\Leftrightarrow x\left(y+1\right)^2=32y\Leftrightarrow x=\dfrac{32y}{\left(y+1\right)^2}\)

Do y và y+1 nguyên tố cùng nhau  \(\Rightarrow32⋮\left(y+1\right)^2\)

\(\Rightarrow\left(y+1\right)^2=\left\{4;16\right\}\)

\(\Rightarrow...\)

b.

\(2a^2+a=3b^2+b\Leftrightarrow2\left(a-b\right)\left(a+b\right)+a-b=b^2\)

\(\Leftrightarrow\left(2a+2b+1\right)\left(a-b\right)=b^2\)

Gọi \(d=ƯC\left(2a+2b+1;a-b\right)\)

\(\Rightarrow b^2\) chia hết \(d^2\Rightarrow b⋮d\) (1)

Lại có:

\(\left(2a+2b+1\right)-2\left(a-b\right)⋮d\)

\(\Rightarrow4b+1⋮d\) (2)

 (1);(2) \(\Rightarrow1⋮d\Rightarrow d=1\)

\(\Rightarrow2a+2b+1\) và \(a-b\) nguyên tố cùng nhau

Mà tích của chúng là 1 SCP nên cả 2 số đều phải là SCP (đpcm)