K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

loading...  loading...  loading...  

a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC

AH chung

=>ΔAHB=ΔAHC

=>HB=HC và góc BAH=góc CAH

b: Xét ΔAMH vuông tại M và ΔANH vuông tại N có

AH chung

góc MAH=góc NAH

=>ΔAMH=ΔANH

=>AM=AN

=>ΔAMN cân tại A

25 tháng 3 2016

a/ Ta có AN vuông góc AC; HM vuông góc AC => AN//HM (1)

Ta có AM vuông góc AB; HN vuông góc AB => AM//HN (2)

=> Tứ giác AMHN là hình bình hành (Tứ giác có các cặp cạnh đối // với nhau từng đôi một là hbh)

AH; MN là hai đường chéo của hbh nên chúng cắt nhau tại trung điểm mỗi đường

b/ Trước hết ta phải c/m A, I, K thẳng hàng

Nối AI; AK

+ Xét tam giác AHK có

Hình bình hành AMHN có ^MAN=90 => ^ANM =90 => AN vuông góc HK nà NK=NH

=> tam giác AKH cân tại A (Tam giác có đường cao đồng thời là đường trung tuyến là tam giác cân)

=> ^KAN=^HAN (1) (trong tam giác cân đường cao đồng thời là đường phân giác)

+ Xét tam giác AIH chứng minh tương tự ta cũng có

^HAM=^IAM (2)

+ Mà ^HAN+^HAM=^BAC=90 (3)

Từ (1) (2) (3) => ^KAN+^IAM=^HAN+^HAM=90

=> ^KAN+^HAN+HAM+^IAM=180 => A,I,K thẳng hàng

+ Ở trên ta đã chứng minh được tam giác AKH và tam giác AIH là tam giác cân tại A

=> AK=AH=AI => A là trung điểm của IK

+ Xét tam giác

27 tháng 3 2016

mình chưa học hình bình hành hay tứ giác

26 tháng 12 2021

a: Xét tứ giác AMEN có 

\(\widehat{AME}=\widehat{ANE}=\widehat{MAN}=90^0\)

Do đó: AMEN là hình chữ nhật

Suy ra: AE=NM

10 tháng 11 2023

A B C H E F M N

a/

Ta có

\(\widehat{A}=90^o;\widehat{MHN}=90^o\) => A và H cùng nhìn MN dưới 1 góc vuông nên A; H thuộc đường tròn đường kính MN => A; M; H; N cùng thuộc 1 đường tròn

Xét tg vuông AHC có

\(MA=MC\Rightarrow HM=MA=MC=\dfrac{AC}{2}\) (trong tg vuông trung tuyến thuộc cạnh huyền bằng nửa cạnh huyền)

=> tg AMH cân tại M \(\Rightarrow\widehat{MAH}=\widehat{MHA}\)

 \(\widehat{NAH}+\widehat{MAH}=\widehat{A}=90^o\)

\(\widehat{NHA}+\widehat{MHA}=\widehat{MHN}=90^o\)

\(\Rightarrow\widehat{NAH}=\widehat{NHA}\) => tg NAH cân tại N => NA=HN (1)

Xét tg vuông ABH có

\(\widehat{NAH}+\widehat{B}=90^o\)

\(\widehat{NHA}+\widehat{NHB}=\widehat{AHB}=90^o\)

Mà \(\widehat{NAH}=\widehat{NHA}\) (cmt)

\(\Rightarrow\widehat{B}=\widehat{NHB}\) => tg BHN cân tại N => NB=HN (2)

Từ (1) và (2) => NA=NB => N là trung điểm AB

b/

Ta có

NA=NB (cmt); MA=MC (gt) => MN là đường trung bình của tg ABC

=> MN//BC

Gọi O là giao của MN với AH. Xét tg ABH có

MN//BC => NO//BH

NA=NB (cmt)

=> OA=OH (trong tg đường thẳng đi qua trung điểm 1 cạnh và // với 1 cạnh thì đi qua trung điểm cạnh còn lại) => O à trung điểm AH

Ta có

\(HE\perp AB\left(gt\right);AC\perp AB\left(gt\right)\) => HE//AC => HE//AF

\(HF\perp AC\left(gt\right);AB\perp AC\left(gt\right)\) => HF//AB => HF//AN

=> AEHF là hình bình hành (Tứ giác có các cặp cạnh đối // với nhau từng đôi một là hbh)

Gọi O' là giao của EF với AH => O'A=O'H (trong hbh 2 đường chéo cắt nhau tại trung điểm mỗi đường) => O' là trung điểm của AH

Mà O cũng là trung điểm của AH (cmt)

=> \(O'\equiv O\) => AH; MN; EF cùng đi qua O