Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đây là toán lớp 10 chứ ko phải lớp 9. Lớp 9 chưa học dạng tam thức bậc 2 có dấu ">" như thế này
Pt có 2 nghiệm cùng lớn hơn 1 khi:
\(\left\{{}\begin{matrix}\Delta'=\left(m+1\right)^2-4m\ge0\\\dfrac{x_1+x_2}{2}>1\\f\left(1\right)=1-2\left(m+1\right)+4m>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(m-1\right)^2\ge0\\m+1>1\\2m-1>0\end{matrix}\right.\)
\(\Rightarrow m>\dfrac{1}{2}\)
Δ=(2m+2)^2-4*4m
=4m^2+8m+4-16m
=4m^2-8m+4
=(2m-2)^2>=0
Để ohương trình có hai nghiệm phân biệt cùng lớn hơn 1 thì
2m-2<>0 và 2(m+1)>0 và 4m>0
=>m>0 và m<>1
\(\Delta\)' = (m +2)2 - (6m +1) = m2 - 2m + 3 = m2 - 2m + 1 + 2 = ( m - 1)2 + 2 > 0 với mọi m
=> Pt đã cho luôn có 2 nghiệm phân biệt. Gọi là x1; x2
Theo hệ thức Vi - ét ta có: x1 + x2 = 2(m+2) ; x1x2 = 6m +1
Để x1 > 2; x2 > 2 <=> x1 - 2 > 0; x2 - 2 > 0
<=> (x1 - 2 ) + (x2 - 2) > 0 và (x1 - 2).(x2 - 2) > 0
+) (x1 - 2 ) + (x2 - 2) > 0 <=> (x1 + x2 ) - 4 > 0 <=> 2.(m +2) - 4 > 0 <=> 2m > 0 <=> m > 0 (*)
+) (x1 - 2).(x2 - 2) > 0 <=> x1x2 - 2(x1 + x2 ) + 4 > 0 <=> 6m + 1 - 4(m +2) + 4 > 0
<=> 2m - 3 > 0 <=> m > 3/2 (**)
Từ (*)(**) => Với m > 3/2 thì PT đã cho có 2 nghiệm phân biệt > 2
Pt có 2 nghiệm trái dấu khi \(ac< 0\)
\(\Rightarrow1.\left(m-1\right)< 0\Rightarrow m< 1\)
Mặt khác theo Viet: \(x_1+x_2=-2< 0\)
\(\Rightarrow\) Nghiệm âm có giá trị tuyệt đối lớn hơn
\(x^3-x^2+2mx-2m=0\)
\(\Leftrightarrow x^2\left(x-1\right)+2m\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2+2m\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x^2=-2m\end{matrix}\right.\)
Để pt có 3 nghiệm \(\Rightarrow-2m>0\Rightarrow m< 0\)
a. Do vai trò 3 nghiệm như nhau, ko mất tính tổng quát giả sử \(x_1=1\) và \(x_2;x_3\) là nghiệm của \(x^2+2m=0\)
Để pt có 3 nghiệm pb \(\Rightarrow\left\{{}\begin{matrix}-2m>0\\-2m\ne1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m< 0\\m\ne-\dfrac{1}{2}\end{matrix}\right.\)
Khi đó: \(x_2+x_3=0\Rightarrow x_1+x_2+x_3=1\ne10\) với mọi m
\(\Rightarrow\) Không tồn tại m thỏa mãn yêu cầu
b.
Giả sử pt có 3 nghiệm, khi đó \(\left[{}\begin{matrix}x_2=-\sqrt{-2m}< 0< 1\\x_3=\sqrt{-2m}\end{matrix}\right.\)
\(\Rightarrow\) Luôn có 1 nghiệm của pt âm \(\Rightarrow\) không tồn tại m thỏa mãn
Em coi lại đề bài
2.giải phương trình trên , ta được :
\(x_1=\frac{-m+\sqrt{m^2+4}}{2};x_2=\frac{-m-\sqrt{m^2+4}}{2}\)
Ta thấy x1 > x2 nên cần tìm m để x1 \(\ge\)2
Ta có : \(\frac{-m+\sqrt{m^2+4}}{2}\ge2\) \(\Leftrightarrow\sqrt{m^2+4}\ge m+4\)( 1 )
Nếu \(m\le-4\)thì ( 1 ) có VT > 0, VP < 0 nên ( 1 ) đúng
Nếu m > -4 thì ( 1 ) \(\Leftrightarrow m^2+4\ge m^2+8m+16\Leftrightarrow m\le\frac{-3}{2}\)
Ta được : \(-4< m\le\frac{-3}{2}\)
Tóm lại, giá trị phải tìm của m là \(m\le\frac{-3}{2}\)