Tìm GTNN của \(T=2m^4+2m^2+12m+18\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x2 - (2m+1)x + 2m - 4 = 0
\(\Delta=\left(2m+1\right)^2-4\left(2m-4\right)\)
\(=4m^2-4m+17>0\)
=> PT luôn có 2 nghiệm phân biệt với mọi m
Theo hệ thức Vi-et ta có \(\left\{{}\begin{matrix}x_1+x_2=2m+1\\x_1x_2=2m-4\end{matrix}\right.\)
\(A=\left(x_1+x_2\right)^2-6x_1x_2+4\)
\(=4m^2+4m+1-12m+28\)
\(=4m^2-8m+29=4\left(m-1\right)^2+25\ge25\)
Dấu "=" xảy ra khi m=1
\(S=\dfrac{2m^2+7m+23}{m^2+2m+10}\Rightarrow Sm^2+2Sm+10S=2m^2+7m+23\)
\(\Leftrightarrow\left(S-2\right)m^2+\left(2S-7\right)m+10S-23=0\)
\(\Delta=\left(2S-7\right)^2-4\left(S-2\right)\left(10S-23\right)\ge0\)
\(\Leftrightarrow4S^2-16S+15\le0\)
\(\Rightarrow\dfrac{3}{2}\le S\le\dfrac{5}{2}\)
\(S_{min}=\dfrac{3}{2}\) khi \(m=-4\)
\(S_{max}=\dfrac{5}{2}\) khi \(m=2\)
Nguyễn Việt Lâm Giáo viên, thầy cho em hỏi tên phương pháp làm của thầy được không ạ??
\(Dựa.vào.ĐL.Viet:\\ \left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=2\left(m-1\right)\\x_1.x_2=\dfrac{c}{a}=2m-4\end{matrix}\right.\\ x_1^2+x^2_2=\left(x_1+x_2\right)^2-2x_1x_2=4\left(m-1\right)^2-4.\left(m-2\right)=4m^2-8m-4m+12\\ =4.\left(m^2-3m+3\right)=4\left(m^2-3m+\dfrac{9}{4}\right)-3\ge-3\forall m\in R\\ Vậy.GTNN.của.A.là:-3\left(khi:m=\dfrac{3}{2}\right)\)
Bài 1:
\(c,\text{PT có 2 }n_0\text{ phân biệt }\Leftrightarrow\Delta'=2^2-2m>0\Leftrightarrow2m< 4\Leftrightarrow m< 2\)
\(T=\left(2m^4-4m^3+8m^2\right)+\left(4m^3-8m^2+16m\right)+\left(2m^2-4m+8\right)+10\)
\(T=2m^2\left(m^2-2m+4\right)+4m\left(m^2-2m+4\right)+2\left(m^2-2m+4\right)+10\)
\(T=2\left(m^2-2m+4\right)\left(m^2+2m+1\right)+10\)
\(T=2\left(m^2-2m+4\right)\left(m+1\right)^2+10\)
\(T=2\left[\left(m-1\right)^2+3\right]\left(m+1\right)^2+10\ge10\)
\(T_{min}=10\) khi \(m=-1\)