[a+b]*2[3.6+2.5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.4 + 2.5 + 3.6 + ..... + 99.102
= 1.(2 + 2) + 2.(3 + 2) + 3.(4 + 2) + ..... + 99.(100 + 2)
= 1.2 + 2 + 2.3 + 2.2 + 3.4 + 2.3 + .... + 99.100 + 2.99
= (1.2 + 2.3 + 3.4 + .... + 99.100) + (1.2 + 2.2 + 3.2 + .... + 2.99)
= 333300 + 2[(99.100)/2]
= 343200
\(B=1.4+2.5+3.6+...+99.102\)
\(=1.\left(2+2\right)+2.\left(2+3\right)+3.\left(2+4\right)+...+99.\left(2+100\right)\)
\(=1.2+2.1+2.3+2.2+3.4+2.3+...+99.100+2.99\)
\(=\left(1.2+2.3+...+99.100\right)+\left(2.1+2.2+2.3+...+2.99\right)\)
\(=333300+2.\left(1+2+3+...+99\right)\)
\(=333300+2.\left(\frac{99.100}{2}\right)\)
\(=333300+99.100=333300+9900=343200\)
kb với mình nha
\(A=1\left(2+2\right)+2\left(2+3\right)+3\left(2+4\right)+.....+\left(n-1\right)\left(2+n\right)\)
\(\Leftrightarrow A=1.2+1.2+2.3+2.2+3.4+2.3+....+\left(n-1\right)n+2\left(n-1\right)\)
\(\Leftrightarrow A=\left(1.2+2.3+.....+\left(n-1\right)n\right)+2\left(1+2+3+....+\left(n-1\right)\right)\)
Giả sử A=B+C
Với \(\begin{cases}B=1.2+2.3+.....+\left(n-1\right)n\\C=2\left[1+2+....+\left(n-1\right)\right]\end{cases}\)
Ta có
\(3B=1.2.\left(3-0\right)+2.3.\left(4-1\right)+......+\left(n-1\right)n\left[\left(n+1\right)-\left(n-2\right)\right]\)
\(\Rightarrow3B=1.2.3-0.1.2+2.3.4-1.2.3+.....+\left(n-1\right)n\left(n+1\right)-\left(n-2\right)\left(n-1\right)n\)
\(\Rightarrow B=\frac{\left(n-1\right)n\left(n+1\right)}{3}\)
Mặt khác
\(C=2\left[1+2+....+\left(n-1\right)\right]\)
\(\Rightarrow C=2.\frac{\left[\left(n-1\right)+1\right]n}{2}=n^2\)
\(\Rightarrow A=\frac{\left(n-1\right)n\left(n+1\right)}{3}+n^2\)
Vậy \(A=\frac{\left(n-1\right)n\left(n+1\right)}{3}+n^2\)
B-A=1.(4-2)+2.(5-3)+...+99.(102-100)
B-A=2.(1+2+...+99)
B-A=\(\frac{\left(99+1\right).99}{2}\)
B-A=4950
B=333300+4950=338250
\(B=1.4+2.5+3.6+...+99.102=1\left(2+2\right)+2\left(3+2\right)+3\left(4+2\right)+...+99\left(100+2\right)\)
\(=1.2+1.2+2.3+2.2+3.4+3.2+...+99.100+99.2\)
\(=\left(1.2+2.3+3.4+...+99.100\right)+2.\left(1+2+3+...+99\right)\)
Tính \(E=1.2+2.3+3.4+...+99.100\)
\(\Rightarrow3E=1.2.\left(3-0\right)+2.3\left(4-1\right)+3.4\left(5-2\right)+...+99.100\left(101-98\right)\)\(=\left(1.2.3+2.3.4+3.4.5+...+99.100.101\right)-\left(1.2.3+2.3.4+3.4.5+...+98.99.100\right)\)
\(=99.100.101\Rightarrow E=\frac{99.100.101}{3}=333300\)
Tính \(F=2.\left(1+2+3+...+99\right)\)
\(=2.\left(\frac{\left(99+1\right)99}{2}\right)=100.99=9900\)
Vậy, \(B=E+F=333300+9900=343200\)
1.4+2.5+3.6+...+99.102
=1(2+2)+2(3+2)+3(4+2)+...99(100+2)
=1.2+1.2+2.3+2.2+...+99.100+99.2
=(1.2+2.3+...+99.100)+2(1+2+...+99)
A=1.2+2.3+3.4+...+99.100(cho A la ten bieu thuc nay)
3A=1.2(3-0)+2.3(4-1)+...+99.100(101-98)
=(1.2.3+2.3.4+...+99.100.101)-(1.2.3+2.3.4+3.4.5+...+98.99.100
=99.100.101=>A=99.100.101399.100.1013=33330
2.(1+2+...99)
=2(100.99:2)=2.4950=9900
33330+9900=343200
Vậy B = 343200
a2+b3[6+2-5