K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 11 2017

c)

  K ẻ   B N ⊥ A C N ∈ A C .   B A C ⏜ = 60 0 ⇒ A B N ⏜ = 30 0 ⇒ A N = A B 2 = c 2 ⇒ B N 2 = A B 2 − A N 2 = 3 c 2 4 ⇒ B C 2 = B N 2 + C N 2 = 3 c 2 4 + b − c 2 2 = b 2 + c 2 − b c ⇒ B C = b 2 + c 2 − b c

Gọi O là tâm đường tròn ngoại tiếp tam giác ABC, R là bán kính đường tròn ngoại tiếp tam giác ABC. Xét tam giác đều BCE có  R = O E = 2 3 E M = 2 B C 3 3.2 = 1 3 . 3 b 2 + c 2 − b c

13 tháng 7 2019

a)     Ta có: A I E ^ = A J E ^ = 90 0  nên tứ giác AIEJ nội tiếp.

E M C ^ = E J C ^ = 90 0  nên tứ giác CMJE nội tiếp.

Xét tam giác Δ A E C   v à   Δ I E M , có

A C E ⏜ = E M I ⏜  ( cùng chắn cung JE của đường tròn ngoại tiếp tứ giác CMJE).

E A C ⏜ = E I M ⏜  ( cùng chắn cung JE của đường tròn ngoại tiếp tứ giác AIEJ).

Do đó hai tam giác  Δ A E C   ~   Δ I E M  đồng dạng

⇒ A E E I = E C E M ⇒ E A . E M = E C . E I (đpcm)

10 tháng 9 2019

b)  Ta có I E M ⏜ = A E C ⏜ ⇒ A E I ⏜ = C E M ⏜ .

Mặt khác A E I ⏜ = A J I ⏜  ( cùng chắn cung IJ), C E M ⏜ = C J M ⏜  ( cùng chắn cung CM). Suy ra C J M ⏜ = A J I ⏜ .  Mà I, M nằm hai phía của đường thẳng AC nên C J M ⏜ = A J I ⏜  đối đỉnh suy ra I, J, M thẳng hàng.

Tương tự, ta chứng minh được H, M, K thẳng hàng.

Do tứ giác CFMK nội tiếp nên C F K ⏜ = C M K ⏜ .

Do tứ giác CMJE nội tiếp nên J M E ⏜ = J C E ⏜ .

Mặt khác E C F ⏜ = 90 0 ⇒ C F K ⏜ = J C E ⏜  ( vì cùng phụ với A C F ⏜ ).

Do đó C M K ⏜ = J M E ⏜ ⇒ J M K ⏜ = E M C ⏜ = 90 0  hay  I J ⊥ H K

15 tháng 11 2023

BH\(\perp\)AE

CK\(\perp\)AE

Do đó: BH//CK

Xét ΔDHB vuông tại H và ΔDKC vuông tại K có

DB=DC

\(\widehat{HDB}=\widehat{KDC}\)

Do đó: ΔDHB=ΔDKC

=>HB=KC

18 tháng 12 2020

a) Xét tứ giác AHDE có 

\(\widehat{DAE}=90^0\)(\(\widehat{BAC}=90^0\), D∈AB, E∈AC)

\(\widehat{ADH}=90^0\)(HD⊥AB)

\(\widehat{AEH}=90^0\)(HE⊥AC)

Do đó: AHDE là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)

b) Xét ΔCEH vuông tại E có EM là đường trung tuyến ứng với cạnh huyền CH(M là trung điểm của CH)

nên \(EM=\dfrac{CH}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)

mà \(MH=CM=\dfrac{CH}{2}\)(M là trung điểm của CH)

nên EM=MH=CM

Xét ΔEMH có ME=MH(cmt)

nen ΔEMH cân tại M(Định nghĩa tam giác cân)

\(\widehat{MEH}=\widehat{MHE}\)

Gọi O là giao điểm của AH và DE

Ta có: AEHD là hình chữ nhật(cmt)

nên hai đường chéo AH và DE cắt nhau tại trung điểm của mỗi đường và bằng nhau(Định lí hình chữ nhật)

mà AH cắt DE tại O

nên O là trung điểm chung của AH và DE

\(AO=OH=\dfrac{AH}{2}\) và \(EO=DO=\dfrac{ED}{2}\)

mà AH=ED(cmt)

nên AO=OH=EO=DO

Xét ΔOHE có OE=OH(cmt)

nên ΔOHE cân tại O(Định nghĩa tam giác cân)

\(\widehat{OEH}=\widehat{OHE}\)(hai góc ở đáy)

Ta có: \(\widehat{MEO}=\widehat{MEH}+\widehat{OEH}\)(tia EH nằm giữa hai tia EM,EO)

mà \(\widehat{MEH}=\widehat{MHE}\)(cmt)

và \(\widehat{OEH}=\widehat{OHE}\)(cmt)

nên \(\widehat{MEO}=\widehat{MHE}+\widehat{OHE}\)

mà \(\widehat{MHE}+\widehat{OHE}=\widehat{MHO}\)(tia HE nằm giữa hai tia HO và HM)

nên \(\widehat{MEO}=\widehat{MHO}\)

\(\Rightarrow\widehat{MED}=\widehat{CHA}\)

mà \(\widehat{CHA}=90^0\)(AH⊥BC)

nên \(\widehat{MED}=90^0\)

Xét ΔMED có \(\widehat{MED}=90^0\)(cmt)

nên ΔMED vuông tại E(Định nghĩa tam giác vuông)

c) Để DE=2EM thì AH=HC(AH=DE và HC=2EM)

Xét ΔAHC vuông tại H có AH=HC(cmt)

nên ΔAHC vuông cân tại H(Định nghĩa tam giác vuông cân)

hay \(\widehat{C}=45^0\)

Vậy: ΔABC phải có thêm điều kiện \(\widehat{C}=45^0\) thì DE=2EM

18 tháng 12 2020

mong mọi người trả lời  hộ em

 

20 tháng 5 2016

a) có 2 góc vg cùng nhìn 1 cạnh

b)EAC=ACO

tam giác AOC cân tại O

=>.......................

c) theo câu a =>AFE=ADE

từ câu b =>CAB=CAE

CAB=BCD

=>...........................

d) đang suy nghĩ