Cho ( O ) vẽ dây MN khác đường kính . Qua O kẻ đường thẳng vuông góc với MN tại I cắt tiếp tuyến tại M ở P
a/ Chứng minh NP là tiếp tuyến của (o)
b/ biết R = 15 cm , OI = 9 cm . Tính MN , OP
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔMOH vuông tại N và ΔNOH vuông tại H có
OM=ON
\(\widehat{MOH}=\widehat{NOH}\)
OH chung
Do đó: ΔMOH=ΔNOH
Suy ra: \(\widehat{MOH}=\widehat{NOH}\)
b: Xét ΔMOQ và ΔNOQ có
OM=ON
\(\widehat{MOQ}=\widehat{NOQ}\)
OQ chung
Do đó: ΔMOQ=ΔNOQ
Suy ra; \(\widehat{OMQ}=\widehat{ONQ}=90^0\)
hay QN là tiếp tuyến của (O)
a: Sửa đề: cắt tiếp tuyến tại A của đường tròn ở C
ΔOAB cân tại O
mà OC là đường cao
nên OC là phân giác của góc AOB
Xét ΔOAC và ΔOBC có
OA=OB
\(\widehat{AOC}=\widehat{BOC}\)
OC chung
Do đó: ΔOAC=ΔOBC
=>\(\widehat{OAC}=\widehat{OBC}=90^0\)
=>CB là tiếp tuyến của (O)
b:ΔOAC=ΔOBC
=>CB=CA
=>C nằm trên đường trung trực của AB(1)
OA=OB
=>O nằm trên đường trung trực của AB(2)
từ (1) và (2) suy ra OC là đường trung trực của BA
=>OC\(\perp\)AB
mà OC//AD
nên AB\(\perp\)AD
=>ΔABD vuông tại A
Ta có: ΔABD vuông tại A
=>ΔABD nội tiếp đường tròn đường kính DB
mà ΔABD nội tiếp (O)
nên O là trung điểm của DB
=>D,O,B thẳng hàng
Xét ΔAKD vuông tại K và ΔCAO vuông tại A có
\(\widehat{ADK}=\widehat{COA}\)(hai góc so le trong, AD//CO)
Do đó: ΔAKD\(\sim\)ΔCAO