Rút gọn biểu thức: A = \(\frac{4x}{x^2+2x}+\frac{3}{2-x}+\frac{12}{x^2-4x}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{4x}{x^2-2x}+\frac{3}{2-x}+\frac{12x}{x^3-4x}\)
\(A=\frac{4x}{x\left(x-2\right)}-\frac{3}{x-2}+\frac{12x}{x\left(x-2\right)\left(x+2\right)}\)
\(A=\frac{4x\left(x+2\right)-3x\left(x+2\right)+12x}{x\left(x-2\right)\left(x+2\right)}\)
\(A=\frac{x\left(x+2\right)+12x}{x\left(x-2\right)\left(x+2\right)}\)
\(A=\frac{x^2+2x+12x}{x\left(x-2\right)\left(x+2\right)}\)
\(A=\frac{x^2+14x}{x\left(x-2\right)\left(x+2\right)}\)
rút gọn biểu thức A =\(\left(\frac{4x}{x^2-4}+\frac{2x-4}{x+2}\right).\frac{x+2}{2x}+\frac{2}{2-x}\)
=[x(x-2)/2(x2+4)-2x2/(4+x2)(2-x)][x(x-2)(x+1)/x3]
={[x(x-2)(2-x)-4x2 ]/2(2-x)(4+x2)} .[x(x-2)(x+1)/x3 ]
=[-x(x2+4)/2(2-x)(4+x2)].[x(x-2)(x+1)/x3 ]
=-x.x(x-2)(x+1)/2(2-x)x3
=(x+1)/2x
\(A=\frac{4x}{x^2+2x}+\frac{3}{2-x}+\frac{12}{x^2-4}\)(ĐK: \(x\ne0,x\ne\pm2\))
\(A=\frac{4}{x+2}+\frac{3}{2-x}+\frac{12}{\left(x-2\right)\left(x+2\right)}\)
\(A=\frac{4.\left(x-2\right)-3\left(x+2\right)+12}{\left(x-2\right)\left(x+2\right)}\)
\(A=\frac{4x-8-3x-6+12}{\left(x-2\right)\left(x+2\right)}\)
\(A=\frac{x-2}{\left(x-2\right)\left(x+2\right)}=\frac{1}{x+2}\)
\(A=\frac{4x}{x^2+2x}+\frac{3}{2-x}+\frac{12}{x^2-4x}\)
\(=\frac{4x}{x\left(x+2\right)}-\frac{3}{x-2}+\frac{12}{x\left(x-2\right)\left(x+2\right)}\)
\(=\frac{4x\left(x-2\right)}{x\left(x+2\right)\left(x-2\right)}-\frac{3x\left(x+2\right)}{x\left(x-2\right)\left(x+2\right)}+\frac{12}{x\left(x-2\right)\left(x+2\right)}\)
\(=\frac{4x^2-8x-3x^2-6x+12}{x\left(x-2\right)\left(x+2\right)}=\frac{x^2-14x+12}{x\left(x-2\right)\left(x+2\right)}\)