a , cho S = 3+ 32 + 33 + ....+ 31997 + 31998 . chứng minh S chia hết cho 26
b, cho a,b thuộc N nếu 7.a + 3.b chia hết cho 23 thì 4a+5b chia hết cho 23 , điều ngược lại có đúng không
giải giúp mình nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xet bieu thuc: 6(7a+3b)+(4a+5b)
=42a+18b+4a+5b
=46a+23b
=23(2a+b)
Neu 6(7a+3b) chia het cho 23 thi 4a+5b chia het cho 23:
Vi 23 chia het cho 23 suy ra 23(2a+b) chia het cho 23 suy ra 6(7a+3b)+(4a+5b) chia het cho 23 ma 6(7a+3b) chia het cho 23 suy ra 4a+5b chia het cho 23
Neu 4a+5b chia het cho 23 thi 6(7a+3b) chia het cho 23:
Vi 23 chia het cho 23 suy ra 23(2a+b) chia het cho 23 suy ra 6(7a+3b)+(4a+5b) chia het cho 23 ma 4a+5b chia het cho 23 suy ra 6(7a+3b) chia het cho 23
Ta có:7(4a+5b)-4(7a+3b) = (28a+35b-28a-12b) = 23a
Vì a thuộc N nên 23a chia hết cho 23 (vì 23 chia hết cho 23 nên 23a chia hết cho 23). Dẫn đến : (28a+35b-28a-12b) chia hết cho 23
Theo bài 4a+5b chia hết cho 23 nên 7(4a+5b) chia hết cho 23 nên 4 (7a+3b) chia hết cho 23 mà (4,23) = 1 nên 7a+3b chia hết cho 23
Ngược lại : 7a+3b chia hết cho 23 nên 4 (7a+3b) chia hết cho 23 nên 7(4a+5b) chia hết cho 23 mà (7,23) = 1 nên 4a+5b chia hết cho 23
k mk nhé. Chúc bạn học tốt!!!!
1 giải
Ta có 17 chia hết cho 17
suy ra 17a+3a+b chia hết cho 17
suy ra 20a+2b chia hết cho 17
rút gọn cho 2
suy ra 10a+b chia hét cho 17
2 giải
* nếu a-5b chia hết cho 17 thì 10a + b chia hết cho 17
vì a-5b chia hết cho 17 nên 10(a-5b) chia hết cho 17 => 10a-50b chia hết cho 17 => 10a-50b+51b chia hết cho 17 hay 10a + b chia hết cho 17 (1) *
nếu 10a + b chia hết cho 17 thì a-5b chia hết cho 17
vì 10a+b chia hết cho 17 nên 10a + b - 51b chia hết cho 17 => 10a - 50b chia hết cho 17 => 10(a-5) chia hết cho 17 mà (10;17)=1 nên a-5b chia hết cho 17 (2)
Từ (1) và (2) suy ra điều phải chứng minh
3 bó tay
Câu trả lời hay nhất: + ta chứng minh a,b,c có ít nhất một số chia hết cho 3
giả sử cả 3 số trên đều không chia hết cho 3
=> a^2 = 1 (mod3) và b^2 = 1 (mod3) (bình phương 1 số chia hết cho 3 hoạc chia 3 dư 1)
=> a^2 + b^2 = 2 (mod3) nhưng c^2 = 1 (mod3) => mâu thuẫn
Vậy có ít nhất 1 số chia hết cho 3
+ tương tự,có ít nhất 1 số chia hết cho 4,vì giả sử cả 3 số a,b,c đều không chia hết cho 4
=> a^2 = 1 (mod4) và b^2 = 1 (mod4) => a^2 + b^2 = 2 (mod 4) nhưng c^2 = 1 (mod 4) => mâu thuẫn
vậy có ít nhất 1 số cgia hết cho 4
+ tương tự a^2 = 1 (mod 5) hoạc a^2 = -1 (mod 5) hoạc a^2 = 4 (mod 5)
và -1 + 1 = 0,1 + 4 = 5,-1 + 4 = 3
=> phải có ít nhất 1 số chia hết cho 5
Vậy abc chia hết cho BCNN(3,4,5) = 60 hay abc chia hết 60
Xét hiệu:
7(4a + 5b) - 4(7a + 3b)
= 28a + 35b - 28a - 12b.
= (28a - 28a) + (35b - 12b)
= 23b
Vì 23 chia hết cho 23 => 23b chia hết cho 23 => 7(4a + 5b) - 4(7a + 3b) chia hết cho 23 (1)
Mà 7a + 3b chia hết cho 23 => 4(7a + 3b) chia hết cho 3 (2)
Từ (1) và (2) => 7(4a + 5b) chia hết cho 23.
=> 4a + 5b chia hết cho 23 (ƯCLN(7; 23) = 1) (ĐPCM)
rat tiec,minh moi hoc lop 5.