Chứng minh rằng với mọi số tự nhiên n ta có
a) \(\left(2^{2^{4n+7}}+7\right)⋮11\)
b) \(\left(1924^{2003^{2004^n}}+1920\right)⋮124\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/ Ta có: \(1999^{30}\equiv\left(1999^2\right)^{15}\equiv8^{15}\equiv\left(8^3\right)^5\equiv16^5\equiv1\left(mod31\right)\)
\(\Rightarrow\left(1999^{30}\right)^{66}\equiv1\left(mod31\right)\Leftrightarrow1999^{1980}\equiv1\left(mod31\right)\) (1)
Lại có: \(1999^{21}\equiv\left(1999^2\right)^{10}.1999\equiv8^{10}.15\equiv\left(8^5\right)^2.15\equiv15\left(mod31\right)\) (2)
Từ (1) và (2) \(\Rightarrow1999^{1980}.1999^{21}\equiv15\Leftrightarrow1999^{2001}\equiv15\left(mod31\right)\)
Hay \(1999^{2001}\) chia cho 31 có số dư là 15.
P/s: Cả năm nay không làm dạng này nên không chắc nha! Lục nghề mất r
2) Khó đây, không chắc đâu. Mình thử dùng quy nạp:
Trước hết ta chứng minh nó với n = 1. Tức là chứng minh \(1924^{2003^{2004}}+1920⋮124\)
\(\Leftrightarrow1924^{2003^{2004}}+1920\equiv0\left(mod124\right)\)
Tách: 124 =4 . 31
Ta có: \(1924\equiv0\left(mod4\right)\Leftrightarrow1924^{2003^{2004}}\equiv0\left(mod4\right)\)
Lại có: \(1924^{30}\equiv1\left(mod31\right)\) (bạn tự chứng minh được mà:D)
Mà: \(2003^{2004}\equiv23^{2004}\equiv19^{1002}\equiv\left(19^2\right)^{501}\equiv1\left(mod30\right)\)
Đặt \(2003^{2004}=30k+1\). Do đó \(1924^{2003^{2004}}=1924^{30k+1}=\left(1924^{30}\right)^k.1924\equiv1.1924\equiv2\left(mod31\right)\)
\(\Rightarrow1924^{2003^{2004}}-2\equiv0\left(mod31\right)\)
\(\Rightarrow1924^{2003^{2004}}-2-31.2\equiv0\left(mod31\right)\)
\(\Rightarrow1924^{2003^{2004}}-64\equiv0\left(mod31\right)\)
Mà \(1924^{2003^{2004}}-64\equiv0\left(mod4\right)\)
Suy ra \(1924^{2003^{2004}}-64\equiv0\left(mod4.31=124\right)\)
Do đó: \(1924^{2003^{2004}}+1920\equiv64+1920\equiv0\left(mod124\right)\)
Vậy nó đúng trong trường hợp n = 1. Ta giả sử nó đúng đến n = k.
Tức là: \(1924^{2003^{2004^k}}+1920⋮124\)
Ta đi chứng minh: \(1924^{2003^{2004^{k+1}}}+1920⋮124\)
Tới đây bí cmnr:(
Đặt \(A=\left(n+2012^{2013}\right)+\left(n+2013^{2012}\right)\)
\(A=2n+\left(2012^4\right)^{503}.2012+\left(2013^4\right)^{503}\)
\(A=2n+\left(...6\right)+\left(...1\right)\)
Ta có : 2n là số chẵn
\(2012^{2013}\) là số chẵn
\(2013^{2012}\) là số lẻ
\(=>A=2n+2012^{2013}+2013^{2012}\) là số lẻ
Vì A là số lẻ => \(\left(n+2013^{2012}\right);\left(n+2012^{2013}\right)\) sẽ có 1 số chẵn và 1 số lẻ
=> \(\left(n+2012^{2013}\right)\left(n+2013^{2012}\right)\) là số chẵn nên chia hết cho 2 ( đpcm )
Cm: \(\forall\)\(x\in\) N ta có: (n + 45).(4n2 -1) ⋮ 3
Trong biểu thức không hề chứa \(x\) em nhá
Biểu thức chứa \(x\) là biểu thức nào thế em?
Bài này em nghĩ là phải sửa thành với mọi \(n\inℕ\) ạ.
Đặt \(P=\left(n+45\right)\left(4n^2-1\right)\)
Với \(n⋮3\) thì hiển nhiên \(n+45⋮3\), suy ra \(P⋮3\)
Với \(n⋮̸3\) thì \(n^2\equiv1\left[3\right]\) nên \(4n^2\equiv1\left[3\right]\) hay \(4n^2-1⋮3\), suy ra \(P⋮3\)
Vậy, với mọi \(n\inℕ\) thì \(\left(n+45\right)\left(4n^2-1\right)⋮3\) (đpcm)