Cho tam giác ABC có \(S=a^2-\left(b-c\right)^2\) . CM: \(tanA=\frac{8}{15}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2 b sai đề thì phải ???
Ta có : \(\sqrt{8abc}:\sqrt{abc}=65\)
=> \(\sqrt{8abc:abc}=65\)
=> 8abc : abc = 65x65
=> 8000 : abc + abc : abc = 4225
=> 8000 : abc + 1 = 4225
=> 8000 : abc = 4224
abc = 8000 : 4224 = \(\frac{125}{66}\)
Sai đề ???
a = 60cm
p = 160/2 = 80cm
p = \(\dfrac{a+b+c}{2}\) (1) => \(\dfrac{2p-a}{2}\) = \(\dfrac{b+c}{2}\)
Vì a, p là 1 hằng số nên để S đạt GTLN <=> (p-b) và (p-c) đạt GTLN
Áp dụng bđt Cosin, ta có:
\(\sqrt{\left(p-b\right)\left(p-c\right)}\) <= \(\dfrac{p-b+p-c}{2}\) = \(\dfrac{2p-b-c}{2}\)
=> \(\dfrac{S}{\sqrt{p\left(p-a\right)}}\) <= \(p-\dfrac{b+c}{2}\) = \(p-\dfrac{2p-a}{2}\) = \(\dfrac{a}{2}\)
=> 2S <= \(a\sqrt{p\left(p-a\right)}\) = \(60\sqrt{80.\left(80-60\right)}\) = 2400
=> S <= 1200 (\(cm^2\))
Dấu "=" xảy ra
<=> \(p-b\) = \(p-c\)
<=> b = c
Thay b = c vào (1), ta được:
p = \(\dfrac{a+2b}{2}\) => 80 = \(\dfrac{60+2b}{2}\) => b = c = 50 (cm)
=> đpcm
a=b=c=1 suy ra Tam giác ABC là tam giác đều vì có độ dài 3 canh = nhau .