K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 2 2021

Có : \(P=4x+\dfrac{16}{x^2}=2x+2x+\dfrac{16}{x^2}\)

- AD AMGM : \(2x+2x+\dfrac{16}{x^2}\ge3\sqrt[3]{\dfrac{2x.2x.16}{x^2}}=12\)

- Dấu " = " xảy ra \(\Leftrightarrow2x=\dfrac{16}{x^2}\)

\(\Leftrightarrow2x^3=16\)

\(\Leftrightarrow x=2\) ( TM )

Vậy ....

( Chắc đề như vầy :vvv )

1 tháng 2 2021

Dùng cái này đánh công thức nha bạn

23 tháng 7 2019

Suy ra f(t) đồng biến trên TXĐ và pt f ( t ) = 21  chỉ có 1 nghiệm duy nhất

Ta thấy t = 10 là 1 nghiệm của pt nên t = 10 là nghiệm duy nhất của pt

⇒ 11 - 2 x - y = 10 ⇒ y = 1 - 2 x ⇒ P = 16 x 2 1 - 2 x - 2 x 3 - 6 x + 2 - 1 + 2 x + 5 = - 32 x 3 + 28 x 2 - 8 x + 4 P ' = - 96 x 2 + 56 x - 8 P ' = 0 ⇔ [ x = 1 4 x = 1 3 P 0 = 4 , P 1 3 = 88 27 ,   P 1 4 = 13 4 , P 1 2 = 3 ⇒ m = 13 4 ,   M = 4 ⇒ M + 4 m = 17

 

17 tháng 4 2017

Đáp án C

Suy ra f(t) đồng biến trên TXĐ và pt f(t) = 21 chỉ có 1 nghiệm duy nhất

Ta thấy t = 10 là 1 nghiệm của pt nên t = 10 là nghiệm duy nhất của pt

⇒ 11 − 2 x − y = 10 ⇒ y = 1 − 2 x ⇒ P = 16 x 2 ( 1 − 2 x ) − 2 x ( 3 − 6 x + 2 ) − 1 + 2 x + 5 = − 32 x 3 + 28 x 2 − 8 x + 4 P ' = − 96 x 2 + 56 x − 8 P ' = 0 ⇔ x = 1 4 x = 1 3 P ( 0 ) = 4 , P ( 1 3 ) = 88 27 , P ( 1 4 ) = 13 4 , P ( 1 2 ) = 3 ⇒ m = 13 4 , M = 4 ⇒ M + 4 m = 17

16 tháng 8 2019

22 tháng 5 2019

a, Với x = 1015 , ta có : 

\(A=\frac{2002-1998:(1015-16)}{316+6,84:0,01}\)

\(A=\frac{2002-1998:999}{316+\frac{684}{100}:\frac{1}{100}}\)

\(A=\frac{2002-2}{316+\frac{171}{25}\cdot100}\)

\(A=\frac{2000}{316+\frac{171}{1}\cdot4}\)

\(A=\frac{2000}{316+684}=\frac{2000}{1000}=2\)

b, Tự làm

3 tháng 7 2019

Đáp án đúng : A

2 tháng 3 2020

\(M=\)như trên

\(=>M=4x^2-4x+1+x+\frac{1}{4x}+2010\)

\(=>M=\left(4x^2-4x+1\right)+\left(x+\frac{1}{4x}\right)+2010\)

\(=>M=\left(2x-1\right)^2+\left(x+\frac{1}{4x}\right)+2010\)

Áp dụng BĐT Cô- si cho 2 số không âm, ta có: 

\(x+\frac{1}{4x}\ge2\sqrt{x.\frac{1}{4x}}=2\sqrt{\frac{1}{4}}=1\)

\(=>M=\left(2x-1\right)^2+\left(x+\frac{1}{4x}\right)+2010\ge0+1+2010=2011\\ \)

=>minM=2011 khi x=\(\frac{1}{2}\)

8 tháng 2 2019

\(B=\frac{x^2+4x+85}{3\left(x+2\right)}=\frac{\left(x^2-14x+49\right)+\left(18x+36\right)}{3\left(x+2\right)}\)

\(=\frac{\left(x-7\right)^2+18\left(x+2\right)}{3\left(x+2\right)}=\frac{\left(x-7\right)^2}{3\left(x+2\right)}+6\ge6\forall x>0\)

Dấu "=" xảy ra khi: \(x-7=0\Leftrightarrow x=7\)