Chứng minh rằng: A=n2+n+1 ko chia hết cho 2 và 5,∀ n∈N
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\left(n+3\right)^2-n^2=\left(n+3+n\right)\left(n+3-n\right)\)
\(=3\left(2n+3\right)⋮3\)
b: Đặt A=\(\left(n-5\right)^2-n^2\)
\(A=\left(n-5\right)^2-n^2\)
\(=n^2-10n+25-n^2\)
\(=-10n+25=5\left(-2n+5\right)⋮5\)
\(A=\left(n-5\right)^2-n^2\)
\(=-10n+25\)
\(-10n⋮2;25⋮̸2\)
=>-10n+25 không chia hết cho 2
=>A không chia hết cho 2
(n + 3)² - n² = n² + 6n + 9 - n²
= 6n + 9
= 3(3n + 3) ⋮ 3
Vậy [(n + 3)² - n²] ⋮ 3 với mọi n ∈ ℕ
--------
(n - 5)² - n² = n² - 10n + 25 - n²
= -10n + 25
= -5(2n - 5) ⋮ 5
Do -10n ⋮ 2
25 không chia hết cho 2
⇒ -10n + 25 không chia hết cho 2
Vậy [(n - 5)² - n²] ⋮ 5 và không chia hết cho 2 với mọi n ∈ ℕ
a) \(n^2+n+1=n\left(n+1\right)+1\)
Ta có \(n\left(n+1\right)⋮2\)vì \(n\left(n+1\right)\)là tích 2 số TN liên tiếp . Do đó \(n\left(n+1\right)+1\)không chia hết cho 2
b) \(n^2+n+1=n\left(n+1\right)+1\)
Ta có \(n\left(n+1\right)\)l là tích của 2 số TN liên tiếp nên tận cùng bằng 0,2,6 . Suy ra \(n\left(n+1\right)\)tận cùng bằng 1,3,7 không chia hết cho 5
\(\left(2-n\right)\left(n^2-3n+1\right)+n\left(n^2+12\right)+8\)
\(=2n^2-6n+2-n^3+3n^2-n+n^3+12n+8\)
\(=5n^2+5n+10\)
\(=5\left(n^2+n+2\right)⋮5\) (đpcm)
a) A = 2n +1 => A là số lẻ \(\Rightarrow⋮̸\)( không chia hết ) 2
b) A có thể chia hết cho 5 , A có thể không chia hết cho 5
Ta có với mọi số nguyên m thì m2 chia cho 5 dư 0 , 1 hoặc 4.
+ Nếu n2 chia cho 5 dư 1 thì n 2 = 5 k + 1 = > n 2 + 4 = 5 k + 5 ⋮ 5 ; k ∈ N * .
Nên n2+4 không là số nguyên tố
+ Nếu n2 chia cho 5 dư 4 thì n 2 = 5 k + 4 = > n 2 + 16 = 5 k + 20 ⋮ 5 ; k ∈ N * .
Nên n2+16 không là số nguyên tố.
Vậy n2 ⋮ 5 hay n ⋮ 5
n 2+n+1 = n(n + 1) +1.
Vì n(n+1) là tích của hai số tự nhiên liên tiếp nên có chữ số tận cùng là 0, 2, 6
Do đó n(n+1) + 1 có chữ số tận cùng là 1, 3, 7.
Vì 1, 3, 7 không chia hết cho 2 và 5 nên n(n+1) + 1 không chia hết cho 2 và 5
Vậy n 2+n+1 không chia hết cho 2 và 5
a) n2+n+1=n(n+1)+1
Ta có n(n+1)⋮2vì n(n+1)n(n+1)là tích 2 số TN liên tiếp . Do đó n(n+1)+1không chia hết cho 2
- n2+n+1=n(n+1)+1
Ta có n(n+1)l là tích của 2 số TN liên tiếp nên tận cùng bằng 0,2,6 . Suy ra n(n+1)tận cùng bằng 1,3,7 không chia hết cho 5