2^2+3^2+4^2+........+2000^2+2021^2giải dùm mình ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Đặt $A=1-2+2^2-2^3+2^4-2^5+2^6-....-2^{2021}+2^{2022}$
$A=1+(-2+2^2-2^3)+(2^4-2^5+2^6)+(-2^7+2^8-2^9)+...+(2^{2020}-2^{2021}+2^{2022})$
$A=1+(-2+2^2-2^3)+2^3(2-2^2+2^3)+2^6(-2+2^2-2^3)+....+2^{2019}(2-2^2+2^3)$
$=1+(-6)+2^3.6+2^6(-6)+....+2^{2019}.6$
$=1+6(-1+2^3-2^6+...+2^{2019})$
Suy ra $A$ chia $6$ dư $1$/
\(=\sqrt{8}\cdot\sqrt{8}-\sqrt[3]{\dfrac{16}{2}}=8-\sqrt[3]{8}=8-2=6\)
\(4\cdot5^2-3^2\cdot\left(2021^0+3^2\right)\)
\(=4\cdot25-9\cdot\left(1+9\right)\)
\(=100-9\cdot10\)
\(=100-90\)
\(=10\)
4. 52- 32. ( 20210+ 32)
= 4 . 25 - 9 . ( 1 + 9 )
= 100 - 9 . 10
= 100-90
= 10
2√48−3√75+5√3248−375+53
=2√16.3−3√25.3+5√3=216.3−325.3+53
=2√42.3−3√52.3+5√3=242.3−352.3+53
=2.4√3−3.5√3+5√3=2.43−3.53+53
=8√3−15√3+5√3=83−153+53
=(8−15+5).√3=(8−15+5).3
=−2√3
Lời giải:
$A=(21-23)+(25-27)+....+(2021-2023)$
$=(-2)+(-2)+...+(-2)$
Số lần xuất hiện của $-2$ là: $[(2023-21):2+1]:2=501$
$A=501(-2)=-1002$
$B=(1-2-3+4)+(5-6-7+8)+....+(1997-1998-1999+2000)$
$=0+0+0+...+0=0$