K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 8 2023

Vì 12p ⋮ 3 nên x²-3xy+p²y² ⋮ 3 mà -3xy ⋮ 3 nên x²+p²y² ⋮ 3 kết hợp với tính chất 1 số chính phương chỉ chia 3 dư 0 hoặc 1 nên nếu tổng 2 chính phương ⋮ 3 thì cả 2 số⋮ 3. Từ đó x² và p²y² mà đây là 2 bình phương và 3 là số nguyên tố nên x² và p²y² ⋮ 9. Vì x2⋮ 9 nên x ⋮ 3 từ đó 3xy ⋮cho 9. Qua đó x²-3xy+p²y² ⋮ 9. Ta có 12p= 4.3p mà (4,9)=1 nên 3p ⋮ 9 từ đó p ⋮ 3 mà p là số nguyên tố nên p = 3. 
=> x²-3xy+p²y² =12p <=> x²-3xy+9y² =36 áp dụng bất đẳng thức Cô si x2+y2 ≥ 2xy với mọi x,y => x²+9y²≥2.x.3y=6xy => 36≥6xy-3xy=3xy =>12≥xy mà x,y là số nguyên dương nên x.y ≥1 nên 12≥xy≥x.1=x
Ta có x²+(-3xy)+9y² chẵn mà đây là tổng 3 số nguyên nên tồn tại 1 số chẵn
nếu x chẵn =>  x²+(-3xy) chẵn => 9y² chẵn mà (9,2)=1 nên y chẵn ta cmtt với y. Từ đó suy ra cả x và y đều chẵn, kết hợp với 12≥x,x⋮3 và x nguyên dương => x∈{6,12} thay x vào x²-3xy+9y² =36 ta tìm được các cặp (x,y) là (6,0);(6,2);(12,6) 
Vậy các cặp (x,y,p) cần tìm là (6,0,3);(6,2,3);(12,6,3)

  
1 tháng 6 2021

hok bik lần nnnnnnnnn

NV
26 tháng 12 2020

1.

\(5=3xy+x+y\ge3xy+2\sqrt{xy}\)

\(\Leftrightarrow\left(\sqrt{xy}-1\right)\left(3\sqrt{xy}+5\right)\le0\Rightarrow xy\le1\)

\(P=\dfrac{\left(x+1\right)\left(x^2+1\right)+\left(y+1\right)\left(y^2+1\right)}{\left(x^2+1\right)\left(y^2+1\right)}-\sqrt{9-5xy}\)

\(P=\dfrac{\left(x+y\right)^3-3xy\left(x+y\right)+\left(x+y\right)^2-2xy+x+y+2}{x^2y^2+\left(x+y\right)^2-2xy+1}-\sqrt{9-5xy}\)

Đặt \(xy=a\Rightarrow0< a\le1\)

\(P=\dfrac{\left(5-3a\right)^3-3a\left(5-3a\right)+\left(5-3a\right)^2-2a+5-3a+2}{a^2+\left(5-3a\right)^2-2a+1}-\sqrt{9-5a}\)

\(P=\dfrac{-27a^3+153a^2-275a+157}{10a^2-32a+26}-\dfrac{1}{2}.2\sqrt{9-5a}\)

\(P\ge\dfrac{-27a^3+153a^2-275a+157}{10a^2-32a+26}-\dfrac{1}{4}\left(4+9-5a\right)\)

\(P\ge\dfrac{-29a^3+161a^2-277a+145}{4\left(5a^2-16a+13\right)}=\dfrac{\left(1-a\right)\left(29a^2-132a+145\right)}{4\left(5a^2-16a+13\right)}\)

\(P\ge\dfrac{\left(1-a\right)\left[29a^2+132\left(1-a\right)+13\right]}{4\left(5a^2-16a+13\right)}\ge0\)

\(P_{min}=0\) khi \(a=1\) hay \(x=y=1\)

Hai phân thức của P rất khó làm gọn bằng AM-GM hoặc Cauchy-Schwarz (nó hơi chặt)

NV
26 tháng 12 2020

2.

Đặt \(A=9^n+62\)

Do \(9^n⋮3\) với mọi \(n\in Z^+\) và 62 ko chia hết cho 3 nên \(A⋮̸3\)

Mặt khác tích của k số lẻ liên tiếp sẽ luôn chia hết cho 3 nếu \(k\ge3\)

\(\Rightarrow\) Bài toán thỏa mãn khi và chỉ khi \(k=2\)

Do tích của 2 số lẻ liên tiếp đều không chia hết cho 3, gọi 2 số đó lần lượt là \(6m-1\)  và \(6m+1\)

\(\Leftrightarrow\left(6m-1\right)\left(6m+1\right)=9^n+62\)

\(\Leftrightarrow36m^2=9^n+63\)

\(\Leftrightarrow4m^2=9^{n-1}+7\)

\(\Leftrightarrow\left(2m\right)^2-\left(3^{n-1}\right)^2=7\)

\(\Leftrightarrow\left(2m-3^{n-1}\right)\left(2m+3^{n-1}\right)=7\)

Pt ước số cơ bản, bạn tự giải tiếp

15 tháng 10 2016

3xy + x + 15y - 44 = 0

<=> x(3y + 1) = 44 - 15y

<=> x = \(\frac{44-15y}{3y+1}=\:-5+\frac{49}{3y+1}\)

Để x nguyên dương thì trước tiên 3y + 1 phải là ước nguyên dương của 49 hay

(3y + 1) = (1; 7; 49)

<=> y = (0; 2; 16)

Chỉ có y = 2, x = 2 là thỏa đề bài

15 tháng 10 2016

tại sao 16 và 0 không được

13 tháng 2 2016

\(3xy+x+15y-44=0\)

\(\Leftrightarrow\)  \(3xy+x+15y=44\)

\(\Leftrightarrow\)  \(3xy+x+15y+5=49\)

\(\Leftrightarrow\)  \(x\left(3y+1\right)+5\left(3y+1\right)=49\)

\(\Leftrightarrow\)  \(\left(x+5\right)\left(3y+1\right)=49\)

Vì  \(x,y\)  nguyên dương nên \(x+5;\)  \(3y+1\)  nguyên dương và lớn hơn  \(1\). Do đó,

\(^{x+5=7}_{3y+1=7}\)  \(\Leftrightarrow\)  \(^{x=2}_{y=2}\)

Vậy, phương trình có nghiệm nguyên là  \(x=y=2\)  (thỏa mãn \(x,y\in Z\)  )

13 tháng 2 2016

cảm ơn nhìu nha

22 tháng 12 2017

3xy+x+15y-44=0

=> (3xy+15y)+(x+5)-49=0

=> 3y.(x+5)+(x+5)=49

=> (x+5)(3y+1)=49

Do x,y là số nguyên dương nên x+5 và 3y+1 là ước dương của 49

Ta có bảng sau:

x+51749
x-4244
3y+14971
y1620

Mà x, y là số nguyên dương nên (x;y) cần tìm là (2;2)