Giải phương trình: \(\frac{1}{x}+2=\left(\frac{1}{x}+2\right).x^2+2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow8\left(x+\frac{1}{x}\right)^2+4\left(x^2+\frac{1}{x^2}\right)\left[\left(x^2+\frac{1}{x^2}\right)-\left(x+\frac{1}{x}\right)^2\right]=\left(x+4\right)^2.ĐKXĐ:x\ne0\)
\(\Leftrightarrow8\left(x+\frac{1}{x}\right)^2+4\left(x^2+\frac{1}{x^2}\right)\left(x^2+\frac{1}{x^2}-x^2-2-\frac{1}{x^2}\right)=\left(x+4\right)^2\)
\(\Leftrightarrow8\left(x+\frac{1}{x}\right)^2-8\left(x^2+\frac{1}{x^2}\right)=\left(x+4\right)^2\)
\(\Leftrightarrow8\left[\left(x+\frac{1}{x}\right)^2-\left(x^2+\frac{1}{x^2}\right)\right]=\left(x+4\right)^2\)
\(\Leftrightarrow8\left(x^2+2+\frac{1}{x^2}-x^2+\frac{1}{x^2}\right)=\left(x+4\right)^2\)
\(\Leftrightarrow16=\left(x+4\right)^2\)
\(\Leftrightarrow x^2+8x+16=16\)
\(\Leftrightarrow x^2+8x=0\)
\(\Leftrightarrow x\left(x+8\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\left(l\right)\\x=-8\left(n\right)\end{cases}}\)
V...\(S=\left\{-8\right\}\)
^^
bạn ghi sai đề ở chỗ \(\left(x+\frac{1}{x}\right)^2\)chứ ko phải \(\left(x+\frac{1}{x^2}\right)^2\)nhé
ĐK: x khác 0
Đặt \(x+\frac{1}{x}=a\)\(\Rightarrow\left(x+\frac{1}{x}\right)^2=a^2\Leftrightarrow a^2=x^2+\frac{1}{x^2}+2\cdot x\cdot\frac{1}{x}\Leftrightarrow a^2-2=x^2+\frac{1}{x^2}\)
Có:
\(8\left(x+\frac{1}{x}\right)^2+4\left(x^2+\frac{1}{x^2}\right)^2-4\left(x^2+\frac{1}{x^2}\right)\left(x+\frac{1}{x}\right)^2\)
\(=8a^2+4\left(a^2-2\right)^2-4\left(a^2-2\right)a^2\)
\(=8a^2+4\left(a^4-4a^2+4\right)-4\left(a^4-2a^2\right)\)
\(=8a^2+4a^4-16a^2+16-4a^4+8a^2=16\)
Thay \(8\left(x+\frac{1}{x}\right)^2+4\left(x^2+\frac{1}{x^2}\right)^2-4\left(x^2+\frac{1}{x^2}\right)\left(x+\frac{1}{x}\right)^2=16\)
vào phương trình, ta có: \(\left(x-4\right)^2=16\)
\(\Leftrightarrow\orbr{\begin{cases}x-4=-4\\x-4=4\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=8\end{cases}}\)Mà điều kiện x khác 0 nên x=8
Vậy phương trình có nghiệm x=8
8(x+1\x)^2+4(x^2+1\x^2)^2-4(x^2+1\x^2)(x+1\x)^2=(x+4)^2
sau đó nhóm 2 hạng tử cuôí vào và đặt 4(x^2+1\x^2)ra còn lại trong ngoặc là x^2+1\x^2-(x+1\x)^2 phân tích tiep ta có x^2+1\x^2-x^2-2-1\x^2=-2
ta có biểu thức :8(x+1\x)^2+4(x^2+1\x^2)(-2)=(x+4)^2
suy ra:8(x+1\x)^2-8(x^2+1\x^2)=(x+4)^2
suy ra:8(x^2+2+1\x^2-x^2-1\x^2)=(x+4)^2
suy ra:giản ước trong ngoặc còn 8 nhân 2 bằng (x+4)^2
suy ra:(x+4)^2=16
suy ra :x+4=4 suy ra x=0
hoặc :x+4=-4 suy ra x=-8
\(\frac{1}{x}+2=\left(\frac{1}{x}+2\right)x^2+2ĐK:x\ne0\)
\(\Leftrightarrow\frac{1}{x}+2=\frac{x^2}{x}+2x^2+2\)
\(\Leftrightarrow\frac{1}{x}+2=x+2x^2+2\)
\(\Leftrightarrow\frac{1}{x}-x-2x^2=0\)
\(\Leftrightarrow\frac{1}{x}-\frac{x^2}{x}-\frac{2x^3}{x}=0\Leftrightarrow1-x^2-2x^3=0\)
\(\frac{1}{x}+2=\left(\frac{1}{x}+2\right).x^2+2\left(ĐKXĐ:x\ne0\right)\)
\(\Leftrightarrow\frac{1}{x}+\frac{2x}{x}=\frac{x^2}{x}+\frac{2x^3}{x}+\frac{2x}{x}\)
\(\Rightarrow1+2x=x^2+2x^3+2x\)
\(\Leftrightarrow1+2x-x^2-2x^3-2x=0\)
\(\Leftrightarrow-2x^3-x^2+1=0\)
\(\Leftrightarrow-2x^3+2x-x+1=0\)
\(\Leftrightarrow-2x.\left(x^2-1\right)-\left(x-1\right)=0\)
\(\Leftrightarrow-2x.\left(x-1\right).\left(x+1\right)-\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right).\left[-2x.\left(x+1\right)-1\right]=0\)
\(\Leftrightarrow\left(x-1\right).\left(-2x^2-2x-1\right)=0\)
\(\Leftrightarrow x=1\)(vì \(-2x^2-2x-1\)vô nghiệm)
Vậy phương trình có tập nghiệm là \(S=\left\{1\right\}\)