a^2/ab+b^2 + b^2/ab-a^2 - a^2+b^2/ab
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b, ta có a3+ b3 = (a+b)(a2-ab +b2)
= (a+b)(a2 -ab +b2 -ab +ab)
= (a+b) ( a2-2ab +b +ab)
=(a+b) [ (a2-b2) +ab ]
vậy ...........................
\(\left(a+b\right)\left(a^2-ab+b^2\right)-\left(a-b\right)\left(a^2+ab+b^2\right)=\left(a^3+b^3\right)-\left(a^3-b^3\right)=2b^3\left(đpcm\right)\)
tik mik nha
1/
\(\left(1\right)=\left(a^3+b^3\right)+\left(a^3-b^3\right)=2a^3\)
2/
\(\left(2\right)=a^3+b^3=\left(a+b\right).\left(a^2-ab+b^2\right)\)
\(\left(2\right)=\left(a+b\right).\left[\left(a^2-2ab+b^2\right)+ab\right]=\left(a+b\right)\left[\left(a-b\right)^2+ab\right]\)
3/
\(\left(3\right)=\left(ac\right)^2+\left(ad\right)^2+\left(bc\right)^2+\left(bd\right)^2\)
\(\left(3\right)=\left[\left(ac\right)^2+2acbd+\left(bd\right)^2\right]+\left[\left(ad\right)^2-2adbc+\left(bc\right)^2\right]\)(do t/c giao hoán trong phép nhân => 2acbd=2adbc)
\(\left(3\right)=\left(ac+bd\right)^2+\left(ad-bc\right)^2\)
\(\sum\dfrac{a}{b^2+bc+c^2}\ge\dfrac{\left(a+b+c\right)^2}{ab^2+abc+ac^2+bc^2+abc+ba^2+ca^2+abc+cb^2}=\dfrac{\left(a+b+c\right)^2}{\left(a+b+c\right)\left(ab+bc+ac\right)}=\dfrac{a+b+c}{ab+bc+ac}\)
(a-b)2 = (a-b).(a-b)
= a2 - ab - ab + b2
= a2 - 2ab + b2 (đpcm)
Bạn cần viết rõ đề bài để được hỗ trợ tốt hơn!
Đề phải thế này không bạn? (Mà đề hỏi gì thế?)
\(\dfrac{a^2}{ab+b^2}+\dfrac{b^2}{ab-a^2}-\dfrac{a^2+b^2}{ab}\)