Cho \(\frac{x}{x^2-x+1}=a\). Tính \(M=\frac{x^2}{x^4+x^2+1}\) theo \(a\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tổng 2 số là 150, tổng của 1/6 số này và 1/9 số kia = 18. Tìm 2 số đó
Xét x=0 thì a=0 và M = 0
Xét x khác 0 thì a khác 0
\(M=\frac{x^2}{x^4+x^2+1}=\frac{x}{x^2-x+1}.\frac{x}{x^2+x+1}\) (1)
\(\Rightarrow\frac{x^2+x+1}{x}=\frac{x^2-x+a}{x}+\frac{2x}{x}\)
\(=\frac{1}{a}+2=\frac{1+2a}{a}\) (2)
Từ (1) và (2) \(\Rightarrow M=a.\frac{a}{1+2a}=\frac{a^2}{1+2a}\)
\(\Rightarrow M=\frac{a^2}{1+2a}\)
+) Xét trường hợp x=0
\(\Rightarrow a=0\)
\(\Rightarrow\frac{a^2}{a+2a}=0\Rightarrow M=0\)
Vậy ...
Ta có: \(\left(x^2-\frac{1}{x^2}\right):\left(x^2+\frac{1}{x^2}\right)=a=>\left(\frac{x^4-1}{x^2}\right):\left(\frac{x^4+1}{x^2}\right)=a\)
\(=>\frac{x^4-1}{x^2}.\frac{x^2}{x^4+1}=a=>\frac{x^4-1}{x^4+1}=a=>x^4-1=a\left(x^4+1\right)=ax^4+a\)
\(=>x^4-ax^4=a+1=>x^4=\frac{a+1}{1-a}\)
Thay vào M,ta có:
\(M=\left(x^4-\frac{1}{x^4}\right):\left(x^4+\frac{1}{x^4}\right)=\left(\frac{a+1}{1-a}-\frac{1}{\frac{a+1}{1-a}}\right):\left(\frac{a+1}{1-a}+\frac{1}{\frac{a+1}{1-a}}\right)\)
\(=\left(\frac{a+1}{1-a}-\frac{1-a}{a+1}\right):\left(\frac{a+1}{1-a}+\frac{1-a}{a+1}\right)=\frac{\left(a+1\right)^2-\left(1-a\right)^2}{\left(1-a\right)\left(a+1\right)}:\frac{\left(a+1\right)^2+\left(1-a\right)^2}{\left(1-a\right)\left(a+1\right)}\)
\(=\frac{\left(a+1\right)^2-\left(1-a\right)^2}{\left(1-a\right)\left(a+1\right)}.\frac{\left(1-a\right)\left(a+1\right)}{\left(a+1\right)^2+\left(1-a\right)^2}=\frac{\left(a+1\right)^2-\left(1-a\right)^2}{\left(a+1\right)^2+\left(1-a\right)^2}\)
\(=\frac{a^2+2a+1-\left(1-2a+a^2\right)}{a^2+2a+1+1-2a+a^2}=\frac{a^2+2a+1-1+2a-a^2}{a^2+2a+1+1-2a+a^2}=\frac{4a}{2a^2+2}=\frac{2.2a}{2.\left(a^2+1\right)}=\frac{2a}{a^2+1}\)
Vậy \(M=\frac{2a}{a^2+1}\)
Làm hộ mk, phân tích đa thức thành nhân tử
a^4 b^4 c^4 - 2*a^2*b^2 - 2*b^2*c^2 - 2*c^2*a^2
\(M=\frac{x^2}{x^4+x^2+1}=\frac{x^2}{x^4+2x^2+1-x^2}=\frac{x^2}{\left(x^2+1\right)^2-x^2}=\frac{x^2}{\left(x^2-x+1\right)\left(x^2+x+1\right)}\)
\(\frac{x}{x^2-x+1}=a\Rightarrow\frac{1}{a}=\frac{x^2-x+1}{x}=\frac{x^2+x-2x+1}{x}=\frac{x^2+x+1}{x}-2\)
\(\Rightarrow\frac{x}{x^2+x+1}=\frac{a}{2a+1}\)
Suy ra \(M=a.\frac{a}{2a+1}=\frac{a^2}{2a+1}\).