1-6x/x-2-9x+4/x+2=x(3x-2)+1/x^2-4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) ĐKXĐ: \(x\notin\left\{2;-2\right\}\)
Ta có: \(\dfrac{1-6x}{x-2}+\dfrac{9x+4}{x+2}=\dfrac{x\left(3x-2\right)+1}{x^2-4}\)
\(\Leftrightarrow\dfrac{\left(1-6x\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\dfrac{\left(9x+4\right)\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}=\dfrac{3x^2-2x+1}{\left(x-2\right)\left(x+2\right)}\)
Suy ra: \(\left(1-6x\right)\left(x+2\right)+\left(9x+4\right)\left(x-2\right)=3x^2-2x+1\)
\(\Leftrightarrow x+2-6x^2-12x+9x^2-18x+4x-8-3x^2+2x-1=0\)
\(\Leftrightarrow-23x-7=0\)
\(\Leftrightarrow-23x=7\)
\(\Leftrightarrow x=-\dfrac{7}{23}\)(nhận)
Vậy: \(S=\left\{-\dfrac{7}{23}\right\}\)
2) ĐKXĐ: \(x\notin\left\{\dfrac{2}{3};-\dfrac{2}{3}\right\}\)
Ta có: \(\dfrac{3x+2}{3x-2}-\dfrac{6}{2-3x}=\dfrac{9x^2}{9x^2-4}\)
\(\Leftrightarrow\dfrac{3x+2}{3x-2}+\dfrac{6}{3x-2}=\dfrac{9x^2}{\left(3x-2\right)\left(3x+2\right)}\)
\(\Leftrightarrow\dfrac{3x+8}{3x-2}=\dfrac{9x^2}{\left(3x-2\right)\left(3x+2\right)}\)
\(\Leftrightarrow\dfrac{\left(3x+8\right)\left(3x+2\right)}{\left(3x-2\right)\left(3x+2\right)}=\dfrac{9x^2}{\left(3x-2\right)\left(3x+2\right)}\)
Suy ra: \(9x^2+6x+24x+16=9x^2\)
\(\Leftrightarrow30x+16=0\)
\(\Leftrightarrow30x=-16\)
hay \(x=-\dfrac{8}{15}\)(nhận)
Vậy: \(S=\left\{-\dfrac{8}{15}\right\}\)
ĐKXĐ: x≠2; x≠-2
Ta có: \(\frac{1-6x}{x-2}+\frac{9x+4}{x+2}=\frac{x\left(3x-2\right)+1}{x^2-4}\)
\(\Leftrightarrow\frac{1-6x}{x-2}+\frac{9x+4}{x+2}-\frac{x\left(3x-2\right)+1}{\left(x-2\right)\left(x+2\right)}=0\)
\(\Leftrightarrow\frac{\left(1-6x\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\frac{\left(9x+4\right)\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}-\frac{3x^2-2x+1}{\left(x-2\right)\left(x+2\right)}=0\)
\(\Leftrightarrow-6x^2-11x+2+9x^2-14x-8-3x^2+2x-1=0\)
\(\Leftrightarrow-23x-7=0\)
\(\Leftrightarrow-23x=7\)
hay \(x=\frac{-7}{23}\)(tm)
Vậy: \(x=\frac{-7}{23}\)
Lời giải:
c.
$(x-3)(x^2+3x+9)-x^3=x^3-3^3-x^3=-27$ không phụ thuộc vào giá trị của biến
Ta có đpcm
d.
$(3x+2)(9x^2-6x+4)-9x(3x^2+1)+9x$
$=(3x)^3+2^3-27x^3-9x+9x$
$=27x^3+8-27x^3=8$ không phụ thuộc vào giá trị của biến
Ta có đpcm
c) Ta có: \(\left(x-3\right)\left(x^2+3x+9\right)-x^3\)
\(=x^3-27-x^3\)
=-27
d) Ta có: \(\left(3x+2\right)\left(9x^2-6x+4\right)-9x\left(3x^2+1\right)+9x\)
\(=27x^3+8-27x^3-9x+9x\)
=8
A = ( 3x )3 + 23 - 27x3 + 6 = 27x3 + 8 - 27x3 + 6 = 14 ( đpcm )
B = x3 + 3x2 + 3x + 1 - ( x3 - 1 ) - 3x2 - 3x = x3 + 1 - x3 + 1 = 2 ( đpcm )
C = 6( x + 2 )( x2 - 2x )( x2 - 2x + 4 ) - 6x3 - 2 ( bạn xem lại đề bài nhé ._. )
D = 2[ ( 3x )3 + 13 ] - 54x3 = 2( 27x3 + 1 ) - 54x3 = 54x3 + 2 - 54x3 = 2 ( đpcm )
\(\Leftrightarrow\left(-6x+1\right)\left(x+2\right)+\left(9x+4\right)\left(x-2\right)=3x^2-2x+1\)
\(\Leftrightarrow-6x^2-12x+x+2+9x^2-18x+4x-8=3x^2-2x+1\)
\(\Leftrightarrow-25x-6=-2x+1\)
=>-23x=7
hay x=-7/23(nhận)
\(\frac{1-6x}{x-2}-\frac{9x+4}{x+2}=\frac{x\left(3x-2\right)+1}{x^2-4}ĐK:x\ne\pm2\)
\(\Leftrightarrow\frac{\left(1-6x\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\frac{\left(9x+4\right)\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}=\frac{x\left(3x-2\right)+1}{\left(x-2\right)\left(x+2\right)}\)
Khử mẫu : \(\Rightarrow x+2-6x^2-12x-9x^2+18x-4x+8=3x^2-2x+1\)
\(\Leftrightarrow7x-15x^2+10=3x^2-2x+1\)
\(\Leftrightarrow9x-18x^2+9=0\Leftrightarrow9\left(-2x^2+x+1\right)=0\)
\(\Leftrightarrow\left(2x+1\right)\left(x-1\right)=0\Leftrightarrow x=-\frac{1}{2}orx=1\)
Vậy tập nghiệm của phương trình là S ={ -1/2 ; 1 }