Câu 1: Cho tam giác ABC cân tại A. Kẻ qua B tia Bx vuông góc với AB, kẻ qua C tia Cy vuông góc với AC. Gọi I là giao điểm của Bx và Cy. CMR:a, Tam giác ABI = tam giác ACIb, AI là trung trực của BCCâu 2: Cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy điểm M, trên tia đối của tia CB lấy điểm N, sao cho BM=CNa, CM tam giác AMN cânb, Kẻ BH vuông góc với AM, CK vuông góc với AN. CMR BH = CKc, Gọi O là giao điểm...
Đọc tiếp
Câu 1: Cho tam giác ABC cân tại A. Kẻ qua B tia Bx vuông góc với AB, kẻ qua C tia Cy vuông góc với AC. Gọi I là giao điểm của Bx và Cy. CMR:
a, Tam giác ABI = tam giác ACI
b, AI là trung trực của BC
Câu 2: Cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy điểm M, trên tia đối của tia CB lấy điểm N, sao cho BM=CN
a, CM tam giác AMN cân
b, Kẻ BH vuông góc với AM, CK vuông góc với AN. CMR BH = CK
c, Gọi O là giao điểm của BH và CK. CM tam giác OBC cân
d, Gọi D là trung điểm của BC. CMR 3 điểm A,D,O thẳng hàng
Câu 3: Cho tam giác ABC cân tại A, M là trung điểm của BC
a, CM tam giác ABM = tam giác ACM
b, CM AM vuông góc với BC
c, Trên cạnh AB lấy điểm E, trên cạnh CA lấy điểm F, sao cho BE = CF. CM tam giác EBC = tam giác FCB
d, CM EF//BC
Bạn nào giúp mk với mk cần gấp
Sửa đề: CN⊥BA tại N
a) Xét ΔBAM vuông tại M và ΔBCN vuông tại N có
BA=BC(ΔABC cân tại B)
\(\widehat{ABM}\) chung
Do đó: ΔBAM=ΔBCN(cạnh huyền-góc nhọn)
b) Ta có: ΔBAM=ΔBCN(cmt)
nên \(\widehat{BAM}=\widehat{BCN}\)(hai góc tương ứng)
hay \(\widehat{NAO}=\widehat{MCO}\)
Ta có: ΔBAM=ΔBCN(cmt)
nên BM=BN(hai cạnh tương ứng)
Ta có: BN+NA=BA(N nằm giữa B và A)
BM+MC=BC(M nằm giữa B và C)
mà BN=MB(cmt)
và BA=BC(cmt)
nên NA=MC
Xét ΔNOA vuông tại N và ΔMOC vuông tại M có
NA=MC(cmt)
\(\widehat{NAO}=\widehat{MCO}\)(cmt)
Do đó: ΔNOA=ΔMOC(cạnh góc vuông-góc nhọn kề)
c) Ta có: ΔNOA=ΔMOC(cmt)
nên OA=OC(hai cạnh tương ứng)
Xét ΔBOA và ΔBOC có
BA=BC(ΔBAC cân tại B)
BO chung
OA=OC(cmt)
Do đó: ΔBOA=ΔBOC(c-c-c)
⇒\(\widehat{ABO}=\widehat{CBO}\)(hai góc tương ứng)
mà tia BO nằm giữa hai tia BA,BC
nên BO là tia phân giác của \(\widehat{ABC}\)(đpcm)