Tìm gtln P= \(\sqrt{x+2}+\sqrt{4-x}\)
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
PT
1
TN
3 tháng 9 2017
Áp dụng BĐT AM-GM ta có:
\(A=\sqrt[4]{1-x^2}+\sqrt[4]{1+x}+\sqrt[4]{1-x}\)
\(\le\frac{1-x^2+1+1+1}{4}+\frac{1+x+1+1+1}{4}+\frac{1-x+1+1+1}{4}\)
\(=\frac{-x^2+4+x+4-x+4}{4}=\frac{-x^2+12}{4}\le3\)
Khi \(x=0\)
NM
1
TN
23 tháng 6 2017
a)Áp dụng BĐT C-S ta có:
\(A^2=\left(\sqrt{x-2}+\sqrt{4-x}\right)^2\)
\(\le\left(1+1\right)\left(x-2+4-x\right)=4\)
\(\Rightarrow A^2\le4\Rightarrow A\le2\)
Đẳng thức xảy ra khi x=3
b)Tiếp tục áp dụng BĐT C-S
\(B^2=\left(\sqrt{x}+\sqrt{2-x}\right)^2\)
\(\le\left(1+1\right)\left(x+2-x\right)=4\)
\(\Rightarrow B^2\le4\Rightarrow B\le2\)
Xảy ra khi x=1
NN
0
Ta có: \(P=\sqrt{x+2}+\sqrt{4-x}\)
\(\Leftrightarrow P^2=\left(\sqrt{x+2}+\sqrt{4-x}\right)^2\) , áp dụng bất đẳng thức Bunyakovsky ta có:
\(P^2\le\left(1^2+1^2\right)\left[\left(\sqrt{x+2}\right)^2+\left(\sqrt{4-x}\right)^2\right]\)
\(=2\left(x+2+4-x\right)=2\cdot6=12\)
\(\Rightarrow P\le2\sqrt{3}\)
Dấu "=" xảy ra khi: \(x+2=4-x\Leftrightarrow x=1\)
Vậy \(Max\left(P\right)=2\sqrt{3}\Leftrightarrow x=1\)