K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 2 2016


Ta có : 2.(10a+b) - (3a +2b) = 20a + 2b - 3a -2b
                                         = 17a 
          Vì 17chia hết cho17=> 17a chia hết cho 17
                                       => 2.(10a+b)- (3a +2b) chia hết cho 17
  Vì 3a+2b chia hết cho 17 => 2(10a+b) chia hết cho 17
                     Mà (2,17) =1=> 10a+b chia hết cho 17
                  Vậy nếu 3a+2b chia hết cho 17 thì 10a +b chia hết cho 17

9 tháng 2 2016

 

Bài 33: (có gạch đầu) 

-Gọi ac là số tự nhiên kém ab 1 đơn vị.

-Theo đề bài ta có:

         aacb=ab.91

         a.1100+c.10+b=910a+91b

         190a+10c=90b

 =>   19a+c=9b

 =>   19a=9b-c

Sau đó cậu nhận xét, chặn rồi thử, chọn vào là OK!

 

5 tháng 1 2016

51a:17

=> 51a-a+5b:17

=> 50a+5b:17

=> 5(10a+b):17

=> 10a+b:17

6 tháng 11 2017

Câu trả lời hay nhất:  + ta chứng minh a,b,c có ít nhất một số chia hết cho 3 
giả sử cả 3 số trên đều không chia hết cho 3 
=> a^2 = 1 (mod3) và b^2 = 1 (mod3) (bình phương 1 số chia hết cho 3 hoạc chia 3 dư 1) 
=> a^2 + b^2 = 2 (mod3) nhưng c^2 = 1 (mod3) => mâu thuẫn 
Vậy có ít nhất 1 số chia hết cho 3 
+ tương tự,có ít nhất 1 số chia hết cho 4,vì giả sử cả 3 số a,b,c đều không chia hết cho 4 
=> a^2 = 1 (mod4) và b^2 = 1 (mod4) => a^2 + b^2 = 2 (mod 4) nhưng c^2 = 1 (mod 4) => mâu thuẫn 
vậy có ít nhất 1 số cgia hết cho 4 
+ tương tự a^2 = 1 (mod 5) hoạc a^2 = -1 (mod 5) hoạc a^2 = 4 (mod 5) 
và -1 + 1 = 0,1 + 4 = 5,-1 + 4 = 3 
=> phải có ít nhất 1 số chia hết cho 5 
Vậy abc chia hết cho BCNN(3,4,5) = 60 hay abc chia hết 60

18 tháng 12 2015

Ta có: 17a chia hết cho 17

suy ra :17a+3a+b chia hết cho 17

suy ra :20a+2b chia hết cho 17

rút gọn cho 2

suy ra :10a+b a hết cho 17

do 3a+2b⋮⋮17

\Rightarrow⇒8(3a+2b)⋮⋮17

     Ta có 8(3a+2b)+10a+b

=24a+16b+10a+b

=34a+17b

17(2a+b)⋮⋮17

vậy 8(3a+2b)+10a+b  ⋮⋮17

             mà 8(3a+2b)⋮⋮17               (\forall∀a,b\in∈N)

      nên 10a+b⋮⋮17

16 tháng 6 2019

\(2\left(10a+b\right)-\left(3a+2b\right)\)

\(=20a+2b-3a-2b\)

\(=17a\)\(⋮\)\(17\)với \(\forall a\in N\)

Vì \(3a+2b\)\(⋮\)\(17\)với \(\forall a\in N\)

\(\Rightarrow2\left(10a+b\right)\)\(⋮\)\(17\)

\(\Leftrightarrow10a+b\)\(⋮\)\(17\)với \(\forall x\in N\)

11 tháng 2 2016

Ta có: 3a+2b chia hết cho 17

=>9(3a+2b) chia hết cho 17

=>27a+18b chia hết cho 17

=>(27a-17a)+(18b-17b) chia hết cho 17         (do 17a,17b chia hết cho 17)

=>10a+b chia hết cho 17 (đpcm)

29 tháng 1 2017

a, Giả sử 10a + b \(⋮\) 17         (1)

Vì 3a + 2b \(⋮\) 17 nên 8(3a + 2b) \(⋮\) 17

=> 24a + 16b \(⋮\) 17                             (2)

Từ (1) và (2) suy ra (10a + b) + (24a + 16b) \(⋮\) 17

=> 10a + b + 24a + 16b \(⋮\) 17

=> (10a + 24a) + (16b + b) \(⋮\) 17

=> 34a + 17b \(⋮\) 17

=> 17(2a + b) \(⋮\) 17

=> Giả sử đúng

Vậy 10a + b \(⋮\)17 (đpcm)

b, Giả sử 10a + b \(⋮\) 17        (1)

Vì a - 5b \(⋮\) 17 nên 7(a - 5b) \(⋮\) 17

=> 7a - 35b \(⋮\) 17                  (2)

Từ (1) và (2) suy ra (10a + b) + (7a - 35b) \(⋮\) 17

=> 10a + b + 7a - 35b \(⋮\) 17

=> (10a + 7a) + (b - 35b) \(⋮\) 17

=> 17a + (-34b) \(⋮\) 17

=> 17.[a + (-2)b] \(⋮\) 17

=> Giả sử đúng

Vậy 10a + b \(⋮\) 17 (đpcm)

22 tháng 11 2021
23456789:123
26 tháng 12 2017

ta có 17 chia hết cho 17 
suy ra 17a + 3a + b chia hết cho 17 
suy ra 20a + 2b chia hết cho 17 
rút gọn cho 2 

suy ra 10a + b chia hết cho 17

26 tháng 12 2017

Giả sử 10a + b chia hết cho 17

=> ( 10a + b ) - ( 3a + 2b ) chia hết cho 17

=> 3( 10a + b ) - 10( 3a + 2b ) chia hết cho 17

=> ( 30a + 3b ) - ( 30a + 20b ) chia hết cho 17

=> 30a + 3b - 30a - 20b chia hết cho 17

=> -17b chia hết cho 17

Biểu thức trên đúng vì -17b = -1 . 17 . b => chia hết cho 17

Với giả thiết ban đầu là 10a + b chia hết cho 17 ta mới có ( 10a + b ) - ( 3a + 2b ) chia hết cho 17

Mà 3a + 2b chia hết cho 17 => 10a + b phải chia hết cho 17

22 tháng 11 2015

3a + 2b chia hết cho 17

17a + 3a + 2b chia hết cho 17

Mà 17a chia hết cho 17

20a + 2b chia hết cho 17

=> (20a + 2b):2 chia hết cho 17

10a + b chia hết cho 17

Vậy 10a + b chia hết cho 17 (đpcm)